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1 Recursive Deterministic Models

Here we will look at recursive methods, starting with a deterministic setting. With recursive methods,
one looks for a policy function, a mapping from the initial conditions, given by the past or the present,
to a set of decisions about what to do with the variables we can choose during this periods. Because
these are normally infinite horizon problems, how we will want to behave in the future matters in
determining what we want to do today. Since what one will want to do in the future matters and
the whole future time path can be determined, the recursive methods we describe are also known as
dynamic programming.

1.1 States and controls

It is helpful to separate the set of variables that we are using into state variables and control variables.
In some period t, the state variables are those whose values are already determined, either by our
actions in the past or by some other process (such as nature).1 Normally, for a growth model of the
type we have been working with, the capital stock that we inherit from the past must be considered a
state variable. One might also think that the technology level in each period is determined by nature
and therefore, in any period, the agents living in that economy must take it as a given.

The control variables in period t are those variables whose values individuals explicitly choose in
that period with the goal of maximising some objective function. Frequently, a modeller has a choice
about which variables will be states and which will be control variables.

1.2 A simple example: Robinson Crusoe model

Consider the simple version of the Robinson Crusoe (RC) model. In that model, Robinson Crusoe
wants to maximise:

max

∞∑
i=0

βiu(ct+i),

subject to the constraints:
kt+1 = (1− δ)kt + it,

and
yt = f(kt) = ct + it.

1We often refer to an equation which describes the transition of a state variable as a “law of motion”.
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We do some familiar rearranging:

it = kt+1 + (1− δ)kt,

=⇒ ct = f(kt)− it
= f(kt) + (1− δ)kt − kt+1,

which allows us to write Robinson Crusoe’s problem as:

max

∞∑
i=0

βiu(f(kt+i) + (1− δ)kt+i − kt+i+1).

In this case, kt+1 is the control variable in period t.
Whatever our choice of a control variable, there must be enough budget constraints or market

conditions so that the values of the rest of the relevant variables in period t are determined. What
may be surprising is that the choice of control variables can matter in how easily we can solve our
models. Some choices will simply be more convenient than others.

1.3 The value function

Assume that it is possible to calculate the value of the discounted value of utility that an agent receives
when that agent is maximising the infinite horizon objective function subject to the budget constraints.
For Robinson Crusoe, this value is clearly a function of the initial per worker capital stock, kt. As
shown above, we can write out a version of this problem where the RC economy us using the capital
stock to be carried over to the next period, kt+1, as the control variable. For that example, the value
utility is equal to:

V (kt) = max
{ks}∞s=t+1

∞∑
i=0

βiu(f(kt+i) + (1− δ)kt+i − kt+1+i), (1)

where we denote the value of the discounted utility by V (kt), to stress that it is a function of the value
of the initial capital stock, kt. For any value of kt, limited to the appropriate domain, the value of
the value function, V (kt), is the discounted value of utility when the maximisation problem has been
solved and when kt was the initial capital stock.

Since V (kt) is a function, its value can be found for any permitted value of kt. In particular, the
value of the function can be found for the value of kt+1 that was chosen in period t. This is possible
because the economy is recursive as mentioned above. In period t+ 1, the value of kt+1 is given (it’s a
state variable) and the problem to be solved is simply the maximisation of utility beginning in period
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t+ 1:

V (kt+1) = max
{ks}∞s=t+2

∞∑
i=0

βiu(f(kt+i+1) + (1− δ)kt+i+1 − kt+i+2), (2)

and its value, V (kt+1), is a function of the stock of capital per worker at t+ 1.
By separating the period t problem from that of future periods, we can rewrite the value function

of (1) as:

V (kt) = max
kt+1

[
u (f(kt) + (1− δ)kt − kt+1) + max

{ks}∞s=t+2

∞∑
i=1

βiu(f(kt+i) + (1− δ)kt+i − kt+i+1

]
.

Adjusting the timing of the second discounted term gives:

V (kt) = max
kt+1

[
u (f(kt) + (1− δ)kt − kt+1) + β max

{ks}∞s=t+2

∞∑
i=0

βiu(f(kt+i+1) + (1− δ)kt+i+1 − kt+i+2

]
.

The second discounted term is nothing but the value function V (kt+1) that we wrote in (2). Making
the substitution, the value function in (1) can be written recursively as:

V (kt) = max
kt+1

[u (f(kt) + (1− δ)kt − kt+1) + βV (kt+1)] (3)

Equations in this form are known as Bellman equations (Bellman 1957). It presents exactly the
same problem as in (1), but written in recursive form. Writing out the problem recursively makes it
conceptually simpler. The value of the choice variable, kt+1, is being chosen to maximise an objective
function of only a single period. The period is reduced from one of infinite dimensions (picking many
future k’s) to one of only one dimension.

But there is a problem: both the time t one-period problem, u(·), and the discounted value function
evaluated at kt+1, βV (kt+1), are included. The value of V (kt+1) is not yet known. If it were known,
then the value of the function V (kt) would also be known – it is the same function – and solving the
maximisation problem at time t would be trivial.

To proceed, we assume that the value function V (·) exists and has a first derivative. We can then
proceed with the one-period maximisation problem (3) by taking the derivative with respect to kt+1

to yield the FOC:

∂V (kt)

∂kt+1
= −u′ (f(kt) + (1− δ)kt − kt+1) + βV ′(kt+1) = 0. (4)

Unfortunately, this isn’t very helpful. We do not know how or what V ′(·) looks like.
Under certain conditions, and this model has been written so that the conditions hold, one can

find the derivative of V (·) simply by taking the partial derivative of the value function as written in
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equation (3) with respect to kt. Theorems that provide the sufficient conditions for getting a derivative
and that tell us how to find it are called envelope theorems. This partial derivative is:

∂V (kt)

∂kt
= u′ (f(kt) + (1− δ)kt − kt+1) (f ′(kt) + (1− δ)).

Now we can substitute this result into (4) for V ′(kt+1):

∂V (kt)

∂kt+1
= −u′ (f(kt) + (1− δ)kt − kt+1) + βu′(f(kt) + (1− δ)kt − kt+1)(f ′(kt) + (1− δ)) = 0,

which gives us the familiar consumption Euler equation:

u′(ct)

u′(ct+1)
= β(f ′(kt+1) + (1− δ)).

In the steady state, where ct = ct+1 = c̄, this Euler equation yields:

1

β
− (1− δ) = f ′(k̄).

Using recursive methods, we find that for a stationary state, the rental rate on capital is equal to the
net interest rate implicit in the discount factor plus the depreciation rate.

1.4 A general version

Let Xt be a vector of the period t state variables and let Yt be a vector of the control variables. In the
example above, Xt = [kt] and Yt = [kt+1].2 Let F (Xt,Yt) be the time t value of the objective function
that is to be maximised. In the example economy, the objective function is the utility function. Given
initial values of the state variables, Xt, the problem to be solved at time t is the value function:

V (Xt) = max
{Ys}∞s=t+1

∞∑
i=0

βiF (Xt+i,Yt+i),

subject to the set of budget constraints given by:

Xs+1 = G(Xs,Ys),

2Notice that in this particular case, it turns out that Yt = Xt+1, that the control at time tbecomes the state variable
at time t+1. This is one of the aspects of the specific example that makes it simple to solve and should not be considered
the normal relationship between control and state variables.
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for s ≥ t. Using the same recursive argument that we used above, we can write the value function as
a Bellman equation:

V (Xt) = max
Yt

[F (Xs,Ys) + βV (Xt+1)] ,

subject to the budget constraints:
Xs+1 = G(Xs,Ys).

Or, we can combine the equations to write the problem with a single equation:

V (Xt) = max
Yt

[F (Xt,Yt) + βV (G(Xt,Yt))] . (5)

The solution to this problem gives the values of the control variables as a function of the time t state
variables:

Yt = H(Xt),

which we call a policy function, since it describes how the control variables behave as a function of the
current state variables. Equation (5) is really a functional equation, since it must hold for every value
of Xt within the permitted domain. Since the policy function optimises the choice of the controls for
every permitted value of Xt, it must fulfil the condition:

V (Xt) = F (Xt, H(Xt)) + βV (G(Xt,Yt)), (6)

where maximisation is no longer required because it is implicit in the policy function, H(Xt).
To find the policy function, H(Xt), we find the FOCs for the problem in equation (5) with respect

to the control variables. The FOCs are:

0 = FY (Xt,Yt) + βV ′(G(Xt,Yt))GY (Xt,Yt), (7)

where FY (Xt,Yt) is the vector of derivatives of the objective function with respect to the control
variables, V ′(G(Xt,Yt)) is the vector of derivatives of the value function with respect to the time t+1

state variables, and GY (Xt,Yt) is the vector of derivatives of the budget constraints with respect to
the control variables. We have the same problem as before: we need to know the derivatives of the
value function to be able to solve for the policy function, and the value function is unknown.

But, we can use envelope theorems from Benveniste and Scheinkman (1979) to find an expression
for the derivative of the value function. Take the derivative of the value function (5) with respect to

7
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taking time t state variables, Xt, one gets the Benveniste-Scheinkman envelope theorem:3

V ′(Xt) = FX(Xt,Yt) + βV ′(G(Xt,Yt))GX(Xt,Yt).

If, as can frequently be done, the controls have been chosen so that GX(Xt,Yt) = 0, then it is possible
to simplify this expression to:

V ′(Xt) = FX(Xt,Yt).

The FOCs of (7) can be written as:

0 = FY (Xt,Yt) + βFX(Xt+1,Yt+1)GY (Xt,Yt)

= FY (Xt,Yt) + βFX(G(Xt,Yt),Yt+1)GY (Xt,Yt).

If the function FX(G(Xt,Yt),Yt+1) is independent of Yt+1, then this equation can be solved for the
implicit function, Yt = H(Xt), which is the required policy function. One can substitute this policy
function into equation (6) and solve for the implicit value function V (·). If FX(G(Xt,Yt),Yt+1) is not
independent of Yt+1, then one can solve for the stationary state as we did before, using the condition
that Yt = Yt+1 = Ȳ.

If it is not the case that GX(Xt,Yt) = 0, then an alternative solution method is to find an
approximation to the value function numerically. Consider some initial guess for the value function,
V0(Xt). it doesn’t matter very much what this initial guess is, and a convenient one is to assume that
it has a constant value of zero. One can then calculate an updated value function, V1(Xt), using the
formula:

V1(Xt) = max
Yt

[F (Xt,Yt) + βV0(G(Xt,Yt))] ,

and doing the maximisation numerically over a sufficiently dense set of values from the domain of
Xt. This maximisation defines, approximately, the function V1(Xt). Using this new function, one can

3Suppose we have the following problem:

V (xt) = max [F (xt, yt) + βV (xt+1)] ,

subject to:
xt+1 = G(xt, yt).

Then the Benveniste-Scheinkman derivative is:

V ′(xt) = Fx(xt, yt) + βV ′(G(xt, yt)Gx(xt, yt).

The following four assumptions are sufficient so that the requirements of Benveniste-Scheinkman are met:
1. xt ∈ X, where X is a convex set with a nonempty interior.

2. F (·) is concave and differentiable.

3. G(·) is concave and differentiable and invertible in yt.

4. yt ∈ Y , where Y is a convex set with a nonempty interior.
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update again and get a new approximate value function V2(Xt) using:

V2(Xt) = max
Yt

[F (Xt,Yt) + βV1(G(Xt,Yt))] .

Repeated application of this process results in a sequence of approximate value functions {Vi(Xt)}∞i=0.
Bellman showed that, under a set of conditions that are often met in economic problems, this sequence
converges to the value function, V (Xt).

1.5 Returning to the Robinson Crusoe model

It is useful to write out the example economy showing how each component matches with the general
version. For the Robinson Crusoe example we had kt as the state variable so Xt = kt, and the capital
stock at time t+ 1 was the control variable so Yt = kt+1.

The objective function is:

F (Xt,Yt) = u(f(kt) + (1− δ)kt − kt+1),

and the budget constraint is written so that the time t+ 1 state variable is:

kt+1 = Xt+1 = G(Xt,Yt) = Yt = kt+1.

The FOC for Robinson Crusoe is:

0 = FY (Xt,Yt) + βV ′(F (Xt,Yt))GY (Xt,Yt)

= −u′(f(kt) + (1− δ)kt − kt+1) + βV ′(G(Xt,Yt))× 1. (8)

Recall that the Benveniste-Scheinkman envelope theorem gives:

V ′(Xt) = FX(Xt,Yt) + βV ′(G(Xt,Yt))GX(Xt,Yt).

For our example, the derivative of the budget constraint with respect to the time t state variable is
simply:

GX(Xt,Yt) =
∂Xt+1

∂Xt
= 0,

so that the envelope theorem condition can be simplified to:

V ′(Xt) = FX(Xt,Yt) = u′(f(kt) + (1− δ)kt − kt+1)(f ′(kt) + (1− δ)),

and the derivative of the value function is defined in terms of functions that we known. We substitute
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this into (8) and get:

0 = −u′(f(kt) + (1− δ)− kt+1) + β [u′(f(kt+1) + (1− δ)kt+1 − kt+2)(f ′(kt+1) + (1− δ))] .

This second-order difference equation can be solved for the steady state, where kt = kt+1 = kt+2 = k̄,
to give:

f ′(k̄) =
1

β
− (1− δ) (9)

1.5.1 Robinson Crusoe model with a twist

The RC model can be written with different choices for the control variables. The state variable in
this version is still time t capital, so Xt = kt, but one can choose time t consumption to be the time t
control variable, Yt = ct. So, our objective function is now:

F (Xt,Yt) = u(ct),

and the budget constraint is:

kt+1 = Xt+1 = G(Xt,Yt) = f(kt) + (1− δ)kt − ct.

Writing out the model, we have the Bellman equation:

V (kt) = max
ct

[u(ct) + βV (f(kt) + (1− δ)kt − ct)] ,

where we have replaced the time t+1 state variable, Xt+1 = kt+1, by the budget constrain the Bellman
equation. It should be clear that the problem given above is the exact same economic problem that
we solved previously.

This version is somewhat less convenient than the earlier RC model when we try to write out the
condition from the envelope theorem. When we take the derivative of the budget constraint with
respect to the time t state variable, we get:

∂G(Xt,Yt)

∂Xt
= f ′(kt) + (1− δ),

and this is generally not equal to zero. If we then write out the envelope theorem condition, we get:

V ′(Xt) = FX(Xt,Yt) + βV ′(G(Xt,Yt))GX(Xt,Yt)

= βV ′(f(kt) + (1− δ)kt − ct)(f ′(kt) + (1− δ)),

and we have the derivative of the value function in terms of the derivative of the value function and

10
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some other terms, which is no improvement.
One of the important tricks of working with the Bellman equation is to write out the objective

function and the budget constraints so that one gets a convenient expression of the envelope theorem,
that is, so that GX(Xt,Yt) = 0. Doing this usually means putting as much of the model as possible
into the objective function and requires keeping the time t state variable out of the budget constraint.

1.6 An approximation of the value function

As mentioned before, we can use numerical methods to find an approximation of the value function (and
the policy function) for specific economies. Suppose that we have the following production function:

f(kt) = kθt ,

for 0 < θ < 1, and the utility function is:

u(ct) = ln ct.

We can write the Bellman equation as:

V (kt) = max
kt+1

[
ln(kθt + (1− δ)kt − kt+1) + βV (kt+1)

]
.

To use the recursive method of calculating the approximate V (·), we need to choose values for δ, θ,
β, and a functional form for V0(·). Let δ = 0.1, θ = 0.36, and β = 0.98. The simplest form to choose
for the initial guess of the value function is the constant function, V0(kt+1) = 0, for all values of kt+1.
Using the equation for the steady state that we found previously, (9), we find that the steady state
values4 for this model are at k = 0 and:

0.36× k̄−0.64 =
1

0.98
− (1− 0.1)

=⇒ k̄ = 5.537.

Attached below is some MATLAB code to carry out the iteration procedure:

1 % Value function iteration
2 global vlast beta delta theta k0 kt
3 hold off
4 hold all
5
6 %set intial conditions
7 vlast=zeros (1 ,100);

4Notice the plural.
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8 k0 =0.06:0.06:6
9 beta =0.98;

10 delta =0.1;
11 theta =0.36;
12 numits =240;
13
14 %begin the recursive calculations
15 for k=1: numits
16 for j=1:100
17 kt=j*0.06;
18 %find the maximum of the value function
19 ktp1=fminbnd (@valfun ,0.01 ,6.2)
20 v(j)=-valfun(ktp1);
21 kt1(j)=ktp1;
22 end
23 if k/48== round(k/48)
24 %plot the steps in finding the value function
25 plot(k0 ,v)
26 xlabel('k(t)')
27 ylabel('V(k(t))')
28 drawnow
29 end
30 vlast=v;
31 end
32 hold off
33 %plot the final policy function
34 figure
35 hold on
36 plot(k0 ,kt1)
37 hline = refline ([1 0]);
38 hline.Color = 'k';
39 hline.LineStyle = ':';
40 hline.HandleVisibility = 'off';
41 xlabel('k(t)')
42 ylabel('k(t+1)')

1 % Subroutine to calculate value function
2 function val=valfun(k)
3 global vlast beta delta theta k0 kt
4 %smooth out the previous value function
5 g=interp1(k0,vlast ,k,'linear ');
6 %calculate consumption with given parameters
7 kk=kt^theta -k+(1-delta)*kt;
8 if kk <= 0
9 %trick to keep values from going negative

10 val = -888 -800* abs(kk);
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11 else
12 %calculate the value of the value function at k
13 val=log(kk)+beta*g;
14 end
15 %change value to negative since fminbnd" finds minimum
16 val=-val;

Figure 1: Approximating the value function
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Source: McCandless (2008)
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Figure 2: The policy function after 240 iterations
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So what is happening here? The black line in Figure 1 is our initial guess, V0(kt) = 0, the blue
line is the value function after 48 iterations, the orange is the 96th, the yellow is the 144th, the purple
is the 192nd, and the green is the 240th. Notice that the steps are gradually getting smaller as the
number of iterations increases and the line moves upward.

The policy function for this economy, which finds the optimising value of kt+1 for each value of
kt, is generated at the same time as the value functions. The one for our example economy, after 240
iterations, is shown in Figure 2 as the function kt+1 = H(kt). Notice that this function crosses the 45
degree line at the steady state value of 5.537.

We will return to this iterative procedure when we look at stochastic recursive methods.

1.7 An example with variable labour

It might be useful to show that recursive methods can be applied to the RC economy where labour is
a variable input. So the utility function is:

∞∑
i=0

βiu(ct+i, ht+i),
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which is maximised subject to the constraints:

kt+1 = (1− δ)kt + it,

yt = f(kt, ht) ≥ ct + it,

ht ≤ 1.

This problem can be written naturally as the Bellman equation:

V (kt) = max
ht,kt+1

[u(f(kt, ht) + (1− δ)kt − kt+1) + βV (kt+1)] .

Here the budget constraint is:
kt+1 = G(kt+1) = kt+1,

which implies that the condition GX(Xt,Yt) = 0 is met, so Benveniste-Scheinkman’s envelope theorem
condition has a simple representation.

There are now two FOCs since there are two controls, ht and kt+1. These conditions are:

∂V (kt)

∂ht
= uc(f(kt, ht) + (1− δ)kt − kt+1, ht)fh(kt, ht) + uh(f(kt, ht) + (1− δ)kt − kt+1, ht) = 0

and
∂V (kt)

∂kt+1
= −uc(f(kt, ht) + (1− δ)kt − kt+1, ht) + βV ′(kt+1).

The envelope condition is:

V ′(kt) = uc(f(kt, ht) + (1− δ)kt − kt+1, ht)(fk(kt, ht) + (1− δ)).

These conditions result in the equations:

uh(f(kt, ht) + (1− δ)kt − kt+1, ht)

uc(f(kt, ht) + (1− δ)kt − kt+1, ht)
= −fh(kt, ht)

and
uc(f(kt, ht) + (1− δ)kt − kt+1, ht)

uc(f(kt+1, ht+1) + (1− δ)kt+1 − kt+2, ht+1)
β [fk(kt+1, ht+1) + (1− δ)] ,

which are the same conditions we would find if we used variational methods.
This model can also be calculated numerically to find approximations for the value function and

for the two policy functions, kt+1 = Hk(kt) and ht = Hh(kt). One chooses an initial guess for the
value function (V0(·) = 0 os frequently convenient) and repeatedly calculates:

Vj+1(kt) = max
ht,kt+1

[u(f(kt, ht) + (1− δ)kt − kt+1, ht) + βVj(kt+1)] ,
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for j = 0, . . . , jmax over a sufficiently dense set of kt. The sequence of functions, Vj+1(kt), converge to
the value function, V (kt), as j → ∞. As in the case above where labour was fixed, each iteration of
this procedure will find the optimising values for kt+1 and ht for each member of the kt set that was
used. This sequence of functions gives approximations for the policy functions that converge to the
policy functions Hk(·) and Hh(·) as j → jmax.

Suppose we have: δ = 0.1, θ = 0.36, β = 0.98, and A = 0.5, and that we assume the following
utility function:

u(ct, ht) = ln ct +A ln(1− ht),

and the production function used is:
f(kt, ht) = kθt h

1−θ
t .

1 % Value function iteration
2 global vlast beta delta theta k0 kt A
3 hold off
4 hold all
5 vlast=ones (1 ,50);
6 k0 =0.2:0.2:10;
7 kt1=k0;
8 h=.5* ones (1 ,50);
9 xmin =[.21 .01];

10 xmax =[9.99 .99];
11 beta =.98;
12 delta =.1;
13 theta =.36;
14 A=.5;
15 options = optimset('Display ','off','LargeScale ','off')
16 numits =240;
17 for k=1: numits
18 for j=1:50
19 kt=k0(j);
20 z0=[kt ,h(j)];
21 z=fmincon (@valfun2 ,z0 ,[],[],[],[],xmin ,xmax ,[], options);
22 v(j)=-valfun2(z);
23 kt1(j)=z(1);
24 h(j)=z(2);
25 end
26 if k/30== round(k/30)
27 plot(k0 ,v)
28 xlabel('k(t)')
29 ylabel('V(t)')
30 drawnow
31 end
32 vlast=v;
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33 end
34 hold off
35 figure
36 hold on
37 plot1=plot(k0 ,kt1);
38 plot2=plot(k0 ,h);
39 hline = refline ([1 0]);
40 hline.Color = 'k';
41 hline.LineStyle = ':';
42 hline.HandleVisibility = 'off';
43 xlabel('k(t)');
44 ylabel('k(t+1) and h(t)');
45 leg1 = "k(t+1)";
46 leg2 = "h(t)";
47 legend ([plot1 ,plot2],[leg1 ,leg2],'Location ','northwest ');

1 % Subroutine to calculate value function
2 function val=valfun2(x)
3 global vlast beta delta theta k0 kt A
4 x;
5 k=x(1);
6 h=x(2);
7 g=interp1(k0,vlast ,k,'linear ');
8 kk =1.75* kt^theta*h^(1-theta)-k+(1-delta)*kt;
9 if kk <=.001

10 val=log (.001)+A*log(1-h)+beta*g+(kk -.001);
11 else
12 val=log(kk)+A*log(1-h)+beta*g;
13 end
14 val=-val;
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Figure 3: Approximating the pair of value functions
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Figure 4: The two policy functions after 240 iterations
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Figure 3 shows the approximate value functions converging upward. The lines shown are Vm(kt)

for iterations number m = 30, 60, . . . , 240. Figure 4 shows the final policy functions for time t + 1
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capital, kt+1 = Hk(kt), and for time t labour input, ht = Hh(kt), along with the 45 degree line so
that the value of kt in the stationary state can be seen. As one might suspect, the amount of labour
supplied along an equilibrium path declines as the capital stock increases.

2 Recursive Stochastic Models

We’ve stuck pretty closely to the material in McCandless (2008)’s introductory material for determin-
istic dynamic programming. We’re going to be moving a bit quicker as we move onto the stochastic
case, mostly because this will be the standard across most of the material we will encounter. As such,
there are different approaches and notation to cover.

2.1 Probability

A probability space (Ω,F , P ) is comprised of three elements: 1) Ω, a set that contains all the states of
nature that might occur, 2) F , a collection of subsets of Ω, where each subset is called an event, and
3) P , a probability measure over F .

First, consider what this means when Ω is a finite set of possible states of nature. For example, it
might contain just two possible values for technology, A1 and A2. Then a natural way to define F is
with four elements: the empty set, ∅, A1, A2, and the set {A1, A2}. A probability measure for these
four sets is 0 for ∅, some value 0 ≤ p1 ≤ 1 for A1, 1− p1 for A2, and 1 for the set {A1, A2}. This says
that either A1 or A2 will occur and, for a large enough sample, A1 will occur with frequency p1.

For larger finite sets of possible states of nature, the structure is the same, but there are simply
more elements to F . If Ω were comprised of three elements, A1 = 0.9, A2 = 1.05, A3 = 1.1, then
in addition to the sets given above, F would include A3, {A1, A3}, {A2, A3}, and {A1, A2, A3}. The
event {A2, A3} contains all possible technology levels greater than 1 and occurs with probability p2 +p3

(when the underlying events are independent and A1 occurs with probability p1, A2 with p2, and A3

with p3, and p1 + p2 + p3 = 1.
This may seem obvious and unnecessary vin defining F , the set of subsets of Ω, and then probab-

ilities over this subset. But when the set of possible states of nature is continuous, then the definition
is more useful. Consider a growth model where technology, At, can take on any value in the set
[0.9, 1.2]. Suppose that the probability distribution is uniform, so that, in some sense, any value is
equally as likely as any other inside the set. In this case, the probability that in some given period t,
At = 1.15565, for example, is zero due to the properties of the uniform distribution. It is in this case
that defining subsets of [0.9, 1.2] becomes useful. Imagine that we want to know the probability that
technology will have a value in period t between 0.97 and 1.03. Since this is a uniform distribution,
this probability can be calculated as 0.06/0.3 = 0.2.

Although the probability of any one value occurring for At is always zero in this example, for any
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positive range of values, one can usually find a positive probability. Therefore, by defining probabilities
over subsets of the state of nature, the definition encompasses situations with a continuous range of
possible states of nature.

2.2 A simple stochastic growth model

Let’s return to the case of Robinson Crusoe, but now the production function is:

yt = Atf(kt),

where we apply the usual assumptions to f(kt) and At can take on two values:

At =

A1 w.p. p1,

A2 w.p. p2,
(10)

and where A1 > A2.
Capital grows with the following law of motion:

kt+1 = Atf(kt) + (1− δ)kt − ct.

At time 0, Robinson Crusoe wants to maximise an expected discounted utility function of the form:

E0

∞∑
t=0

βtu(ct).

Future consumption paths are represented by a kind of tree. Given some initial capital k0, in period
0 there are two possible technology levels that could occur and two different amounts of production,
represented by the ordered pair {A1f(k0), A2f(k0)}, with probabilities {p1, p2}. Depending on which
state occurs in period 0, RC will choose some time 1 capital stocks of {k1

1, k
2
1}. In period 1, produc-

tion will be one of these four possibilities: {A1f(k1
1), A2f(k1

1), A1f(k2
1), A2f(k2

1)}, with probabilities
{p1p1, p1p2, p2p1, p2p2}.

Suppose that one can write the value of the maximum expected discounted utility given an initial
capital stock of k0, when the time 0 realisation of technology is A1, as:

V (k0, A1) = max
{ct}∞t=0

E
∞∑
t=0

βtu(ct),

subject to the budget constraint for t = 0:

k1 = A1f(k0) + (1− δ)k0 − c0,
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and those for t ≥ 1:
kt+1 = Atf(kt) + (1− δ)kt − ct,

and the independent realisations of At given by (10). One could write a similar setup by replacing A1

with A2.
Expected utility is a function of two state variables: capital inherited and the realised technology

level. As shown previously, this expression can be written recursively as:

V (k0, A
0) = max

c0

[
u(c0) + βE0V (k1, A

1)
]
,

subject to:
k1 = A0f(k0) + (1− δ)k0 − c0.

There is a subtle change in how the value function is written. It is now written as a function of the
time 0 realisation of the technology shock. As this function is written, k0 and A0 are the state variables
and c0 is the control variable. The second part of the value function is written with the expectations
term because given a choice for c0 (and through the budget constraint of k1), it will have a value of
V (k1, A1) with probability p1, and a value of V (k1, A2) with probably p2. For any particular choice of
k̂1 of the time 1 capital stock, the expectations expression is equal to:

E0V (k̂1, A
1) = p1V (k̂1, A1) + p2V (k̂1, A2).

For any initial time period t, the problem can be written as:

V (kt, A
t) = max

ct

[
u(ct) + βEtV (kt+1, A

t+1)
]
,

subject to:
kt+1 = Atf(kt) + (1− δ)kt − ct.

Or, by making kt+1 as the control/choice variable, we can write the problem as:

V (kt, A
t) = max

kt+1

[
u(Atf(kt) + (1− δ)kt − kt+1) + βEtV (kt+1, A

t+1)
]
, (11)

and the budget constraint (using the definition in the previous section) is:

kt+1 = G(Xt,Yt) = kt+1.

The solution to a stochastic recursive problem finds a function that gives the values of the control
variables that maximises the value function over the domain of the state variables. Since the state
variables include both the results of previous choices of control variables and the results of nature’s

21



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

choices of the value for the stochastic state variables, we call the solution function a plan and write it
as:

kt+1 = H(kt, A
t).

The plan gives the optimising choice of the control variables in every period as a function of the regular
state variables and of the states of nature. A plan fulfils the condition that:

V (kt, A
t) = u(Atf(kt) + (1− δ)kt −H(kt, A

t)) + βEtV (H(kt, A
t), At+1).

2.3 A general version

Using the notation in the previous section, we can write the value function as:

V (Xt,Zt) = max
{Ys}∞s=t

Et
∞∑
s=t

βs−tF (Xs,Ys,Zs),

subject to the budget constraints given by:

Xs+1 = G(Xs,Ys,Zs),

for s ≥ t, where Xt is the set of regular state variables, Zt is the set of state variables determined by
nature (stochastic state variables), and Yt are the control variables. As before, F (·) is the objective
function and G(·) are the budget constraints. This problem can be written recursively as a Bellman
equation of the form:

V (Xt,Zt) = max
Yt

[F (Xs,Ys,Zs) + βEtV (Xt+1,Zt+1)] , (12)

subject to:
Xt+1 = G(Xt,Yt,Zt).

The solution is a plan of the form:
Yt = H(Xt,Zt),

where
V (Xt,Zt) = F (Xt, H(Xt,Zt),Zt) + βEtV (G(Xt, H(Xt,Zt),Zt),Zt+1),

holds for all values of the state variables (including the stochastic state variables).
The FOCs for the problem in equation (12), and its budget constraints are:

0 = FY (Xt,Yt,Zt) + βEt [VXG(Xt,Yt,Zt),Zt+1)GX(Xt,Yt,Zt)] .
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When one is able to choose the controls so that GX(Xt,Yt,Zt) = 0, the above equation is:

VX(Xt,Zt) = FX(Xt,Yt,Zt),

and the FOCs give the consumption Euler equation (in stochastic form):

0 = FY (Xt,Yt,Zt) + βEt [FX(G(Xt,Yt,Zt),Yt+1,Zt+1)GY (Xt,Yt,Zt)] .

2.3.1 The problem of dimensionality

Up to this point, the discussion of the general version has said nothing about the dimension of the
stochastic variable, Zt. In the example economy previously, the stochastic variable had only two
possible realisations in any period. That the stochastic shock could take on so few values makes
the exposition simple. In theory, there is no necessity that the dimension be small, and it is quite
possible to describe a model in which the realisation of the stochastic variable comes from a continuous
distribution. In practice, the dimension of the state space and the variables in it do matter.

Logically, it should be possible to follow the same steps as the deterministic case and begin with
an initial guess for the value function, V0(Xt,Zt), and iterate on the equation:

Vj+1(Xt,Zt) = max
Yt

[F (Xt,Yt,Zt) + βEtVj(G(Xt,Yt,Zt),Zt+1)] ,

to find approximations of the value function and the policy functions that converge on the actual value
function and plans. Indeed it is possible if the dimensions of Xt and Zt are not too large. The reason
for this is that the dimensions of the calculations for the stochastic case are the dimensions of Xt

multiplied by the dimensions of Zt. If one is using numerical techniques to calculate iterations of the
value function, the number of points to be found in each iteration can be come quite burdensome.

2.4 The value function for the simple economy

Let’s write equation (11) as a pair of Bellman equations, one for each of the two possible time t
realisations of At, as:

V (kt, A1) = max
kt+1

{u(A1f(kt) + (1− δ)kt − kt+1) + β [p1V (kt+1, A1) + p2V (kt+1, A2)]} ,

and

V (kt, A2) = max
kt+1

{u(A2f(kt) + (1− δ)kt − kt+1) + β [p1V (kt+1, A1) + p2V (kt+1, A2)]} ,

where we’ve written out the expected values in terms of their respective probabilistic outcomes.
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The iteration process requires choosing starting functions for both V0(kt, A1) and V0(kt, A2). Given
these initial functions, the functions from the first iteration, V1(kt, A1) and V1(kt, A2), are found by
simultaneously calculating:

V1(kt, A1) = max
kt+1

{u(A1f(kt) + (1− δ)kt − kt+1) + β [p1V0(kt+1, A1) + p2V0(kt+1, A2)]} ,

and

V1(kt, A2) = max
kt+1

{
u(A1f(kt) + (1− δ)kt − kt+1) + β [p1V0(kt+1, A1) + p2V0(kt+1, A2)]

}
,

over the discrete subset of values of kt. To find the results of the next iterations, V2(kt, A1) and
V2(kt, A2), we calculate:

V2(kt, A1) = max
kt+1

{u(A1f(kt) + (1− δ)kt − kt+1) + β [p1V1(kt+1, A1) + p2V1(kt+1, A2)]} ,

and

V2(kt, A2) = max
kt+1

{u(A2f(kt) + (1− δ)kt − kt+1) + β [p1V1(kt+1, A1) + p2V1(kt+1, A2)]} .

Repeated iterations result in a sequence of pairs of functions {Vj(kt, A1), Vj(kt, A2)}∞j=0 that converge
to the desired pair of value functions, {V (kt, A1), V (kt, A2)}.

2.4.1 Calculating the value functions

Use our parameters from before: δ = 0.1, β = 0.98, θ = 0.36, the production function is f(kt) = kθt ,
and the utility function is u(ct) = ln ct. Let A1 = 1.75 with p1 = 0.8 and A2 = 0.75 with p2 = 0.2.
We choose initial guesses as V0(kt, A1) = 20 and V0(kt, A2) = 20. The first iteration round results in
calculations for V1(kt, A

t) of:

V1(kt, A1 = 1.75) = max
kt+1

ln(1.75k0.36
t + 0.9kt − kt+1) + 0.98× 20,

and
V1(kt, A2 = 0.75) = max

kt+1

ln(0.75k0.36
t + 0.9kt − kt+1) + 0.98× 20.

The second round V2(kt, A
t) functions are found maximising:

V2(kt, 1.75) = max
kt+1

{
ln(1.75k0.36

t + 0.9kt − kt+1) + 0.98 [0.8V1(kt+1, 1.75) + 0.2V1(kt+1, 0.75)]
}
,
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and

V2(kt, 0.75) = max
kt+1

{
ln(0.75k0.36

t + 0.9kt − kt+1) + 0.98 [0.8V1(kt+1, 1.75) + 0.2V2(kt+1, 0.75)]
}
.

Continued iterations result in the value functions shown in Figure 5. In this figure, the two curves are
shown every 50 iterations (the last is at iteration 250). The pair of policy functions that we have after
250 iterations is shown in Figure 6, where the lower one is for At = 0.75.

1 % Value function iteration
2 global vlast1 vlast2 beta delta theta k0 kt At p1 p2
3 hold off
4 hold all
5 vlast1 =20* ones (1,40);
6 vlast2=vlast1;
7 k0 =0.4:0.4:16;
8 kt11=k0;
9 kt12=k0;

10 beta =.98;
11 delta =.1;
12 theta =.36;
13 A1 =1.75;
14 p1=.8;
15 p2=1-p1;
16 A2=.75;
17 numits =250;
18 for k=1: numits
19 for j=1:40
20 kt=k0(j);
21 At=A1;
22 z=fminbnd (@valfunsto ,.41 ,15.99);
23 v1(j)=-valfunsto(z);
24 kt11(j)=z;
25 At=A2;
26 z=fminbnd (@valfunsto ,.41 ,15.99);
27 v2(j)=-valfunsto(z);
28 kt12(j)=z;
29 end
30 if k/50== round(k/50)
31 plot(k0 ,v1 ,k0,v2)
32 xlabel('k(t)')
33 ylabel('V(k(t),A(t))')
34 drawnow
35 end
36 vlast1=v1;
37 vlast2=v2;
38 end
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39 hold off
40 figure;
41 hold on
42 plot1=plot(k0 ,kt11);
43 plot2=plot(k0 ,kt12);
44 hline = refline ([1 0]);
45 hline.Color = 'k';
46 hline.LineStyle = ':';
47 hline.HandleVisibility = 'off'
48 xlabel('k(t)');
49 ylabel('k(t+1)');
50 leg1 = "H(k(t) ,1.75)";
51 leg2 = "H(k(t) ,0.75)";
52 legend ([plot1 ,plot2],[leg1 ,leg2],'Location ','northwest ');

1 % Subroutine to calculate value function
2 function val=valfunsto(x)
3 global vlast1 vlast2 beta delta theta k0 kt At p1 p2
4 k=x;
5 g1=interp1(k0 ,vlast1 ,k,'linear ');
6 g2=interp1(k0 ,vlast2 ,k,'linear ');
7 kk=At*kt^theta -k+(1- delta)*kt;
8 if kk <=.001
9 val=log (.001)+beta*(p1*g1+p2*g2)+200*(kk -.001);

10 else
11 val=log(kk)+beta*(p1*g1+p2*g2);
12 end
13 val=-val;
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Figure 5: Approximating the pair of value functions
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Figure 6: The two policy functions after 240 iterations
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2.5 Markov chains

We can use Markov chains for a richer random process. In a Markov chain, the probabilities for the
realisations of the states of nature in period t are a function of the realisation that occurred in period
t−1 and only in period t−1. To use recursive methods, we want a Markov chain that is time invariant
– the probabilities depend on the previous period realisation and not the actual period that we’re
currently in.

There are three elements to a Markov chain. The first is the set of realisations for the state of
nature; in the example we have been using, it is the set of values that our At variable can take on. This
set has a fixed, finite dimension, n, and {At} = {A1,A2, . . . , An}. The dimension n and the values Ai
are the same in every period. In the example above, n = 2 and {At} = {A1 = 1.75, A2 = 0.75}.

The second element of a Markov chain is a matrix of transition probabilities, P , where element pi,j
is the probability that state j will occur when the state of nature in the previous period was state i.
For example, we could have the following transition matrix:

P =

[
p11 p12

p21 p22

]
=

[
0.9 0.1

0.4 0.6

]
,

for At. These values are chosen so that the shock exhibits some kind of persistence.
The third element of a Markov chain is the initial state of nature, from period t−1, that determines

the row of the P matrix where we begin (or the probability distribution of the initial period’s stochastic
variable if this is different from a row of P ). With the initial distribution given, the probability of any
future outcome can be calculated.

The probabilities given by the matrix P are condition probabilities in the sense that once the
economy is in the state of nature A1, the top row of the P matrix describes the probabilities for the
state of nature in the next period. Once the economy is in the state of nature A2, the second of
the P matrix describes the probabilities of ending up in the state of nature A1 or A2 in the next
period. These are conditional probabilities since they tell how the economy will proceed once it is in
a particular state. We may also be interested in the unconditional probabilities of the occurrence of
the states of nature in this economy. These are the probabilities that the economy will be in state of
nature A1 or A2 when we know nothing about the previous period. If we observe the economy long
enough, the unconditional probabilities will tell us how often we observe state of nature A1 and A2.

Unique invariant unconditional probability distributions exist if every element of the P matrix is
positive (pij > 0). Suppose that p0 is the initial probability distribution (the one for period 1). The
unconditional probability distribution for period 2 is p0P , given the initial distribution. Multiplying
p0 by the transition matrix gives the probability distribution for period 2. In period 3, the distribution
is p0P

2 = p0PP . In any period n + 1, the probability distribution for the states of nature is p0P
n.

The claim is that as n→∞, p0P
n → P∞ independently of p0.
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Using the 2× 2 matrix P from above, the first elements of this sequence are:

P =

[
0.9 0.1

0.4 0.6

]
,

P 2 =

[
0.85 0.15

0.60 0.40

]
,

P 3 =

[
0.825 0.175

0.70 0.30

]
,

and in the limit:

P∞ =

[
0.8 0.2

0.8 0.2

]
.

Notice a special characteristic of the P∞ matrix: all the rows of the matrix are the same. This is
because each row gives the unique invariant unconditional probability distribution. Now, let’s suppose
we have the following initial probability distribution:

p0 =
[
0.36 0.64

]
.

If we multiply this vector by the matrix P∞ we get:

p0P
∞ =

[
0.36 0.64

] [0.8 0.2

0.8 0.2

]
=
[
0.36× 0.8 + 0.64× 0.8 0.36× 0.2 + 0.64 + 0.2

]
=
[
0.8 0.2

]
.

No matter your initial probability distribution, with a Markov chain you can find the unique invariant
unconditional probability distribution for a long enough time path.

We can write the value function for an economy with a Markov chain as:

Vj+1(Xt,Zt) = max
Yt

[F (Xt,Yt,Zt) + βEtVj(G(Xt,Yt,Zt),Zt+1)|Zt] .

For the growth economy, modified by using the Markov chain, the value functions are:

V (kt, A1) = max
kt+1

{u(A1f(kt) + (1− δ)kt − kt+1) + β [p11V (kt+1, A1) + p12V (kt+1, A2)]} ,
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and

V (kt, A2) = max
kt+1

{u(A2f(kt) + (1− δ)kt − kt+1)β [p21V (kt+1, A1) + p22V (kt+1, A2)]} .

As before, for specific economies, the value function is found by iterating, given some initial choice
of the function, V0(kt, A

t). For the example economy we have been using, but with the matrix P used
in place of the constant probabilities, the j + 1-th iteration of the value function is:

Vj+1(kt, 1.75) = max
kt+1

{
ln(1.75k0.36

t + 0.9kt − kt+1) + β [0.9Vj(kt+1, 1.75) + 0.1Vj(kt+1, 0.75)]
}

and

Vj+1(kt, 0.75) = max
kt+1

{
ln(0.75k0.36

t + 0.9kt − kt+1) + β [0.4Vj(kt+1, 1.75) + 0.6Vj(kt+1, 0.75)]
}
.

As before, these value functions converge to a V (kt, A
t) and contingent plans. The main catch with

Markov chains is that while they help with improving shock persistence in a simulated time path for a
state variable, they do not explain why the persistence exists. The time series that result from these
kinds of models can be made to display persistence, but this persistence is not explained in economic
terms (see Ljungqvist and Sargent (2018) for further discussion on Markov chains).

3 Projection Methods

We now switch away from value function iteration to projection methods, introducing a slight change in
notation. These methods compute directly the policy function without calculating the value functions.
They use the first-order conditions (Euler equation) to back out the policy rules. Let’s consider
a simple example and suppose that x is some exogenous variable and that the following equation
implicitly defines y:

g(x, y) = 0, ∀x ∈ X.

Let the solution be defined by the policy rule:

y = h(x),

which satisfies the following error function condition:

R(x, h) ≡ g(x, h(x)) = 0, ∀x ∈ X.

As we know, finding the policy rule, h, is a big problem outside of special cases – there are an
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infinite number of unknowns (i.e., one value of h for each possible x) in an infinite number of equations
(i.e., one equation for each possible x). There are broadly two approaches to this problem: projection
and perturbation, each with their own different sub-versions and variations.

The main idea of projection is to find a parametric function, ĥ(x;ψ), where ψ is a vector of
parameters chosen so that it imitates the property of the exact solution, i.e., R(x;h) = 0, ∀x ∈ X, as
well as possible. So we choose values for ψ so that

R̂(x;ψ) = g(x, ĥ(x;ψ)) ≈ 0, ∀x ∈ X.

The method is defined by the meaning of ‘close to zero’, by the parametric function, ĥ(x;ψ), that is
used, and spectral functions. Spectral functions are functions, such as ĥ(x;ψ), in which each parameter
in ψ influences ĥ(x;ψ), ∀x ∈ X. For example:

ĥ(x;ψ) =

n∑
i=0

ψiGi(x), ψ =


ψ1

...
ψn

 ,
where Gi(x) = Ti(ϕ(x)), and Ti(z) : [−1, 1] → [−1, 1] is an i-th order Chebyshev polynomial, and
ϕ : X → [−1, 1]. What does this all mean? Before proceeding, it’s worth talking about approximating
functions and numerical integration.

3.1 Function approximation

If you have a finite set of data points and wish to determine the underlying functional form, you will
need to resort of function approximation. For example, suppose one knows the next period’s value of
the interest rate, Rt+1, is some function of the current interest rate, but one doesn’t know what the
functional form is. That is, one has the empirical relationship:

Rt+1 = f(Rt) + εt+1,

and the question is then whether with enough data one can discover the functional form of f .
The need for approximating functional forms also arises if one could in principle calculate the func-

tion value for any given set of arguments but that it is very expensive to do so. For example, the
function value may be the outcome of many complex calculations and it may take a lot of computing
time to calculate one function value. With an approximating functional form, one could obtain (ap-
proximate) function values much quicker. Again, the goal would be to come up with an approximating
functional form using a finite set of data points. There is a big difference with the problem that the
econometrician faces, however, because the econometrician cannot choose their data points. We will
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see that the freedom to choose the location of the arguments makes it much easier to come up with
accurate approximations. Finally, the theory of function approximation is very useful if one is trying
to solve for a function that is implicitly defined by a system of functional equations.

3.1.1 Polynomial approximations

We will mostly look at polynomial approximations, i.e.:

yt = a0 + a1x+ a2x
2 + · · ·+ anx

n,

where x is a scalar. Later, we will discuss functions with multiple arguments. We will see that there
are actually many different types of polynomials by choosing different basis functions, Ti(x). That is,
a more general way to write polynomials is:

yt = a0 + a1T1(x) + a2T2(x) + · · ·+ anTn(x).

For example, Ti(x) could be (lnx))i. Moreover, one can take transformations. For example, if one
knows that the function is always positive, one could use this information by letting

yt = exp {a0 + a1T1(x) + a2T2(x) + · · ·+ anTn(x)} .

How good are polynomial approximations? Weierstrass’ theorem5 tells us that a continuous real-
valued function defined on a bounded interval on the real line can be approximated arbitrarily well using
the sup norm if the order of the polynomial goes to infinite. Even functions that have a discontinuity
can be approximated arbitrarily well if one uses another norm then the sup norm.

So how to find these approximations? We will discuss four different ways to come up with a
polynomial approximation. the procedures differ in whether they use only local information (Taylor
expansion) or whether they use information about derivatives or not:

Taylor expansion: If one has the function value and n derivatives at one point, x0, then one can
calculate a polynomial approximation using the Taylor expansion:

f(x) ≈ f(x0) + (x− x0)
∂f(x)

∂x

∣∣∣∣
x=x0

+ · · ·+ (x− x0)n

n!

∂nf(x)

∂xn

∣∣∣∣
x=x0

.

Note that the RHS is indeed a polynomial.
Projection: More common though is that one has n + 1 function values, f0, f1, . . . , fn, at n + 1

arguments, x0, x1, . . . , xn. There are two procedures to find the coefficients of the polynomial. The
5Let f be a continuous real-valued function defined on the real interval [a, b]. For every ε > 0, ∃ a polynomial p

such that for all x ∈ [a, b] we have |f(x) − p(x)| < ε. In other words: there exists a polynomial that approximates any
continuous function arbitrarily well.
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first is to run a regression. If you do it right you get an R2 equal to 1.
Lagrange interpolation: The approximating polynomial is also given by:

f(x) ≈ f0L0(x) + · · ·+ fnLn(x), (13)

where:
Li(x) =

(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− x0)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

Li(x) is a polynomial so that the RHS of (13) is a polynomial too. So we only have to show that this
polynomial gives an exact fit at the n+ 1 points. This is easy if one realises that:

Li(x) =

1 if x = xi,

0 if x ∈ {x0, . . . , xn}\{xi}.

Consequently, one gets:
f(xi) = fi.

It is unlikely that you will actually find it useful to write the polynomial like this, but we will see that
this way of writing a polynomial is useful for numerical integration.

Hermite interpolation: The last two procedures only used function values at a set of grid points.
Now suppose that in addition to n+ 1 function values one also has numerical values for the derivatives
at the nodes, i.e., f

′

0, f
′

1, . . . , f
′

n. With these 2(n+ 1) pieces of information one calculate a (2n+ 1)-th
order polynomial.

f(x) ≈
n∑
i=0

fiHi(x) +

n∑
i=0

f
′

i H̃i(x),

where:

Hi = (1− 2L
′

i(xi)(x− xi))Li(x)2,

H̃i = (x− xi)Li(x)2.

Note that:

Hi(x) = H
′

i (x) =

1 if x = xi,

0 if x ∈ {x0, . . . , xn}\{xi}.

The approximation gets the function values right at all nodes because the H̃i(xj) terms are all zero and
the Hi(xj) terms are 1 at xj = xi and zero otherwise. The approximation gets the derivatives right
because the Hi(xj) are all zero and the H̃i(xj) select with all its zero/one structure the appropriate
derivative.
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3.1.2 Orthogonal polynomials

From the discussion above, it became clear that finding the coefficients of the polynomial is like a
projection on the space spanned by the basis function ,i.e., like a regression. In any introductory
econometrics course, one learns about the problem of multicollinearity and the advantage of having
uncorrelated explanatory variables. The same is true in function approximation. Moreover, in numer-
ical problems it is important to have good initial conditions. The problem with the basis functions of
regular polynomials (i.e., 1, x, x2, and etc.) is that these terms are often highly correlated unless one
has a lot of variation in the argument. Adding additional polynomial terms could thus very well mean
that the coefficients of all polynomial terms change substantially even if the extra terms have little
additional explanatory power.

Orthogonal polynomials are such that the basis functions are by construction orthogonal with
respect to a certain measure. That is, the basis functions of all orthogonal polynomials satisfy:6∫ b

a

Ti(x)Tj(x)w(x)dx = 0, ∀i, j � i 6= j,

for some weighting function w(x). Popular orthogonal polynomials are Chebyshev polynomials and the
reason they are popular will become clear below. Chebyshev polynomials are defined on the interval
[a, b] = [−1, 1] and the weighting function is given by:

w(x) =
1√

(1− x2)
.

The basis functions of the Chebyshev polynomials are given by:

T c0 (x) = 1,

T c1 (x) = x,

...

T ci+1(x) = 2xT ci (x)− T ci−1(x), i > 1.

Note that if one builds a polynomial with Chebyshev basis functions, i.e.:

f(x) =

n∑
j=0

ajT
c
j (x),

6A note on terminology: � means “contains as an element”.
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then one also has a standard polynomial of the form:

b0 + b1x+ b2x
2 + · · ·+ bnx

n,

where the bj ’s are functions of the aj ’s. The same is true for other orthogonal polynomials. So the
reason why we use orthogonal polynomials is that it is easier to find the coefficients, for example,
because if one adds higher order terms, good initial conditions are the coefficients one found with the
lower-order approximation. Chebyshev polynomials are defined on a particular interval but note that a
continuous functions on a compact interval can always be transformed so that is defined in this range.

3.1.3 Chebyshev nodes

We now defined a concept of which the importance will become clear in the remainder of this section.
Chebyshev nodes are the x-values at which a basis function is equal to zero. For example:

T c2 (x) = 2x2 − 1,

and the corresponding roots are equal to −
√

1
2 and

√
1
2 . Similarly:

T c3 (x) = 4x3 − 3x,

and the roots are equal to −
√

3
4 , 0, and

√
3
4 . If one wants to construct n Chebyshev nodes, one thus

takes the n-th Chebyshev basis function and finds the roots that set it equal to zero.

3.1.4 Uniform convergence

Weierstrass’ theorem implies that there are polynomial approximations that converge uniformly to-
wards the true function, because convergence in the sup norm implies uniform convergence. To find
this sequence, however, one must be smart in choosing the points that one uses in the approximation.
If one uses observed data points one doesn’t have this degree of freedom, but in many numerical prob-
lems one does. The flexibility to choose the approximation points will turn out to be a great benefit
in many numerical problems.

It turns out that by fitting the polynomial at the Chebyshev nodes guarantees uniform convergence.
A famous function to document how terrible not having uniform convergence can be is:

f(x) =
1

1 + 25x2
,

defined on [−1, 1]. As an exercise you should compare the following two strategies to find the coeffi-
cients of the approximating polynomial. The first strategy finds the coefficients of the approximating
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polynomial using n+1 equidistant points and its function values. The second strategy uses Chebyshev
nodes. The polynomials that one obtains with equidistant points only converge point wise and as n
increases one sees bigger and bigger oscillations.

For a formal discussion one should read Judd (1998). But some intuition of why Chebyshev nodes
are so powerful can be obtained by thinking of the formula for standard errors in a standard regression
problem. If X is the matrix with all the observations of the explanatory variables and σ2 is the
error variance, then the standard error is given by σ2(X>X)−1. That is, the further apart the X

values the smaller the standard error. Chebyshev nodes are more spread towards the boundaries than
equidistant points and, thus, we obtain a more accurate approximation using polynomials fitted at
Chebyshev nodes.

3.1.5 Other types of basis functions

Orthogonal polynomials can be written as ordinary polynomials. They differ from ordinary polyno-
mials by having different basis functions, but an n-th order Chebyshev polynomial can be written as
n-th order regular polynomial. Nevertheless one has quite a bit of flexibility with polynomial approx-
imations. For example, instead of approximating f(x) one can approximate f(exp x̃) = f(exp(lnx)).
Or if one knows that the function value is always positive, one can approximate ln f(x).

Of course, one could consider alternatives using polynomial basis functions. An alternative is to
use neural nets. The idea behind neural nets is very similar to using polynomial approximations but
they use different basis functions to build up the approximating function. In particular let X be a
vector with function arguments and let f : Rn → R. Then the leural net approximations is given by:

f(X) ≈
J∑
j=1

γjg(w>j X + bj),

where wj ∈ Rn, γj , bj ∈ R, and g : R → R is a scalar squashing function – a function with function
values in the unit interval. Neural net approximations are not very popular in macroeconomics. The
reason is that neural net approximations need quite a few parameters (layers) to approximate low-order
polynomials and many series in economics are well approximated with polynomials. Neural nets have
been more successful in explain time series with more chaotic behaviour.

3.2 Splines

The approximation procedures discussed above all had in common that for each possible argument
at which one would like to evaluate the function, there is one identical polynomial. The idea about
splines is to split up the domain into different regions and to use a different polynomial for each region.
This would be a good strategy if, the function can only be approximated well with a polynomial of a
very high order over the entire domain, but can be approximated well with a sequence of low-order
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polynomials for different parts of the domain. The inputs to construct a spline are again n+1 function
values at n+ 1 nodes.

Splines can still be expressed as a linear combination of basis functions which is the same for each
possible argument, but this is not a polynomial. The basis functions are zero over most of the domain.
Thus splines take a much more local approach and a change in a function value far away from xi is
much less likely to affect the approximation for f(xi) when using splines than when using polynomial
approximations.

Piecewise linear: The easiest spline to consider a piecewise linear interpolation. That is for
x ∈ [xi, xi+1]:

f(x) ≈
(

1− x− xi
xi+1 − xi

)
fi +

(
x− xi

xi+1 − xi

)
fi+1.

n-th order spline: Piecewise linear splines are in general not differentiable at the nodes and this
could be a disadvantage. But it is easy to deal with this by fitting a low-order polynomial on each
segment and choose the coefficients such that it fits the function values at the nodes and the function
is smooth at the nodes. Consider what needs to be done to implement a cubic spline. A cubic spline
uses:

f(x) ≈ ai + bix+ cix
2 + dix

3, x ∈ [xi−1, xi].

Since we have n segments, we have n separate cubic approximations and thus 4n coefficients. What
are the conditions that we have to pin down these coefficients?

We have 2 + 2(n − 1) conditions to ensure that the function values correspond to given function
values at the nodes. For the two endpoints, x0 and xn+1, we only have one cubic that has to fit it
correctly. But for the intermediate nodes we need that the cubic approximations of both adjacent
segments give the correct answer. For example, we need that:

f1 = a1 + b1x1 + c1x
2
1 + d1x

3
1, and

f1 = a2 + b2x1 + x2x
2
1 + d2x

3
1.

To ensure differentiability at the intermediate nodes we need:

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3di+1x

2
i , xi ∈ {x1, . . . , xn−1},

which gives us n− 1 conditions.
With a cubic spline one can also ensure that second derivatives are equal:

2ci + 6dixi = 2ci+1 + 6di+1xi, xi ∈ {x1, . . . , xn−1}.

We now have 2 + 4(n − 1) = 4n − 2 conditions to find 4n unknowns. So we need two additional
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conditions. For example, one can set the derivatives at the end points equal to zero. There are several
algorithms to find the coefficients of spline approximations.

Coefficients of the spline: What are the coefficients of the spline? There are two answers. The
first answer is to say that the coefficients that determine the functional form are the n+ 1 coefficients
combinations for xi, fi. The other answer is to say that they are all the coefficients of the separate
polynomials. Both answers are, of course, correct. But for latter applications it is more convenient
to think of the coefficients of the splines as the (xi, fi) pairs and when the nodes don’t change, then
the coefficients are just the n + 1 function values, i.e., the fi’s. Now note that these values may not
directly reveal the function value at an arbitrary x, but given that we do use a particular spline, these
function values pin down the spline and thus the approximating function value at x. More importantly,
if finding the approximating function is part of a bigger numerical project, then the goal is to find the
n+ 1 function values at the nodes. These completely pin down the solution.

3.3 Shape-preserving approximations

Polynomial approximations oscillate around the true function value. Moreover, these oscillations could
be such that the approximating function does not inherit important properties of the approximating
function, such as monotonicity or concavity. Can you approximate a function and preserve such
properties? That is, suppose that the n + 1 function values satisfy properties such as being positive,
monotonic, and concave. Can you come up with an approximation that also has these properties?

If one uses one polynomial for the complete domain then this is more likely to happen if one uses a
low-order polynomial. But since the fit in terms of distance may be worse for the low-order polynomial
one could face a trade-off between accuracy and desired shape.

Actually, there is one approximation we discussed that automatically preserves monotonicity and
concavity and that is the piece-wise linear approximation. That is, if the function f(x) is monotonic and
concave, then the n+1 function values will of course inherit these properties and so will the interpolated
values. Schumacher’s algorithm finds second order splines that preserve (if present) monotonicity and
concavity/convexity.

3.4 Multivariate polynomials

3.4.1 Polynomial approximations

Extending polynomial approximations to multivariate problems is very easy. Just like one easily for-
mulates multivariate polynomials using standard basis functions, one can also formulate multivariate
polynomials using other basis functions. For example, consider a function that has x and y as argu-
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ments. Then the n-th order complete polynomial is given buy:∑
i+j≤n

Ti(x)Tj(y).

The n-th order tensor product polynomial is given by:∑
i≤n,j≤n

Ti(x)Tj(y).

3.4.2 Splines

Linear interpolation is easy for multivariate problems. Here we give the formulas for the interpolation of
a function that depends on x and y and one has the four function values, fxy, for the (x, y) combinations
equal to (a, c), (b, c), (b, d), and (a, d). In this rectangle the interpolated value is given by:

f(x, y) =

1
4

(
2− 2x−ab−a

)(
2− 2y−cd−c

)
fac

+ 1
4

(
2x−ab−a

)(
2− 2y−cd−c

)
fbc

+ 1
4

(
2x−ab−a

)(
2y−cd−c

)
fbd

+ 1
4

(
2− 2x−ab−a

)(
2y−cd−c

)
fad

.

Since the RHS has the cross product of x and y, this is a first order tensor but not a first order complete
polynomial. At the boundaries, i.e., the walls of the box, the function is linear, which means that the
function automatically coincides with the interpolated values of the box right next to it.

Extending splines to multivariate problems is tricky. To see why think about what one has to
ensure to construct a two-dimensional spline. The equivalent of the segment for the univariate case is
now a box with the floor representing the space of the two arguments. Now focus on the fitted values
on one of the walls. These function values and the corresponding derivatives have to be equal to those
on the wall of the box next to it. So instead of ensuring equality at a finite set of nodes one now has
to ensure equality at many points even in the two dimensional case.

3.4.3 What type of approximation to use

Before one uses any approximation method one should ask oneself what one knows about the function.
For example, it is possible that there are special cases for which one knows the functional form. Also,
sometimes one knows that the functional form is more likely to be simple in the logs than in the
original arguments. This would be the case if one expects the elasticity of f with respect to x to be
fairly constant (as opposed to ∂f

∂x ).
The big question one faces is whether one should use one (possibly high-order) polynomial for the

entire domain or several (possibly lower-order) polynomials for separate segments. The latter doesn’t
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mean one has to use splines with many segments. Using prior knowledge one can also split the domain
in a small number of separate regions, for example, a region where a borrowing constraint is present
and one where it is not binding. For each of the regions one then fits a separate approximating function.
Note that for the case of borrowing constraints one typically wouldn’t want the function at the node
that connects the two regions to be differentiable. So one really could simply fit two polynomials on
the two regions.

3.5 Numerical integration

Numerical evaluation of a definite integral is a frequent problem encountered in economic modelling.
If a firm pays a continuous stream of dividends, d(t), and the interest rate is r, then the present value
of the dividends equals: ∫ ∞

0

exp(−rt)d(t)dt.

If the random variable X is distributed N(0, 1), then the expectation of f(X) is:

(2π)−
1
2

∫ ∞
−∞

f(x) exp

(
−x

2

2

)
dx.

In Bayesian statistics, if one’s prior belief over the parameter space, Θ, has density f(θ), if the data
are X, and if g(X|θ) is the density of X conditional on θ, then the posterior mean belief is:∫

θg(X|θ)f(θ)dθ∫
g(X|θ)f(θ)dθ

.

Not only do integrals arise naturally in formulations of economic and econometric problems, but we
will often introduce them as part of our numerical procedures. For example, computing the coefficients
of orthogonal polynomial approximations.

3.6 Quadrature techniques

Suppose we want to calculate:

I =

∫ b

a

f(x)dx,

where f(x) is a scalar function. This could be a difficult problem, e.g., because the functional form is
nasty or because we do not even have a functional form, but only a set of function values.

Quadrature techniques are numerical integration techniques for which the formula of the numerical
integral can be written as:

I =

∫ b

a

f(x)dx ≈
n∑
i=1

ωifi,
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where fi is the function value of f at node x, and ωi is a weight. We will discuss two types of
quadrature techniques. The first is Newton-Cotes. Newton-Cotes is not very careful about choosing
the location of the nodes, but is clever about choosing the weights. The second is Gaussian Quadrature.
This procedure is clever about choosing the weights as well as the nodes. To implement quadrature
methods you can forget the details of the derivation. All you have to remember is how to construct
what kind of weights and this is relatively easy.

3.6.1 Newton-Cotes formulas

The Newton-Cotes quadrature formulas use ideas from piecewise-polynomial approximation theory.
They evaluate f at a finite number of points, use this information to construct a piecewise-polynomial
approximation of f , and then integrate this approximation of f to approximate

∫
D
f(x)dx. This section

will present various Newton-Cotes formulas and their error properties.

Figure 7: Newton-Cotes rules

Source: Judd (1998)

Consider the graph in Figure 7. Suppose that f is the solid curve through the points P , Q, and
R. The integral

∫ b
a
f(x)dx is the area under the function f and above the horizontal axis. Three

approximations are immediately apparent. The box aUQV b approximates f with a constant function
equaling f at Q, which is the midpoint of [a, b]. The trapezoid aPRb approximates f with a straight line
through points P and R. The area under the broken curve PQSR approximates f with a parabola
through P , Q, and R. These approximations are based on one, two, and three evaluations of f ,
respectively, which are used to compute interpolating polynomials of degree one, two, and three. This
approach yields Newton-Cotes quadrature formulas.

Midpoint rule: The simplest quadrature formula is the midpoint rule:

∫ b

a

f(x)dx = (b− a)f

(
a+ b

2

)
+

(b− a)3

24
f ′′(ξ), (14)
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for some ξ ∈ [a, b]. We will express many integration formulas in the fashion of (14), where the first
terms comprise the integration rule and the last term is the error of the integration rule. Hence the
midpoint rule is the first term on the RHS of (14), and the second term is its error term. Equation
(14) is provided by applying Taylor’s theorem and the intermediate value theorem. The midpoint rule
is the simplest example of an open rule, which is a rule that does not use the end points.

This approximation is too coarse to be of value generally. Instead, we break the interval [a, b]

into smaller intervals, approximate the integral over each of the smaller intervals, and add those
approximations. The result is a composite rule. Let n ≥ 1 be the number of intervals, h = (b− a)/n,
and xj = a+ (j − 1

2 )h, j = 1, 2, . . . , n. Then the composite midpoint rule derives the equation:

∫ b

a

f(x)dx = h

n∑
j=1

f(xj) +
h2(b− a)

24
f ′′(ξ), (15)

for some ξ = [a, b]. Notice that the error is proportional to h2; doubling the number of quadrature
nodes will have the step size h and reduce the error by about 75 percent. Therefore the composite
midpoint rule converges quadratically for f ∈ C2.7

Trapezoid rule: The trapezoid rule is based on the linear approximation of f using only the value
of f at the endpoints of [a, b], The trapezoid rule is:∫ b

a

f(x)dx =
b− a

2
[f(a)− f(b)]− (b− a)3

12
f ′′(ξ), (16)

for some ξ ∈ [a, b]. The trapezoid rule is the simplest example of a closed rule, which is a rule that uses
the end points. Let h = (b− a)/n, and xi = a+ ih, and let fj denote f(xj); the composite trapezoid
rule is: ∫ b

a

f(x)dx =
h

2
[f0 + 2f1 + · · ·+ 2fn−1 + fn]− h2(b− a)

12
f ′′(ξ), (17)

for some ξ ∈ [a, b].
Simpson’s rule: Piecewise linear approximation of f in the composite trapezoid rule is unneces-

sarily coarse if f is smooth. An alternative is to use a piecewise quadratic approximation of f which
uses the value of f at a, b, and the midpoint, 1

2 (a+ b). The result is Simpson’s rule over the interval
[a, b]. Simpson’s rule is:∫ b

a

f(x)dx =

(
b− a

6

)[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (4)(ξ), (18)

7C0: Curves are continuous
C1: First derivatives are continuous
C2: First and second derivatives are continuous
Cn: First through n-th derivatives are continuous
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for some ξ ∈ [a, b].
We next construct the corresponding (n+ 1)-point composite rule over [a, b]. Let n ≥ 2 be an even

number of intervals; then h = (b− a)/n, xj = a+ jh, j = 0, . . . , n, and the composite Simpson’s rule
is:

Sn(f) =
h

3
[f0 + 4f1 + 2f2 + 4f3 + · · ·+ 4fn−1 + fn]− h4(b− a)

180
f (4)(ξ), (19)

for some ξ ∈ [a, b]. The composite Simpson’s rule essentially takes three consecutive xj nodes, uses
the interpolating quadratic function to approximate f , and integrates the interpolating quadratic to
approximate the integral over that interval.

Notice that by using a locally quadratic approximation to f we have an error order h4, whereas the
locally linear approximation yields the trapezoidal rule which has error of order h2. As with any local
approximation of smooth functions, higher order approximations yield asymptotically smaller errors.

3.6.2 Gaussian formulas

Newton-Cotes formulas use a collection of low-order polynomial approximations on small intervals to
derive piecewise polynomial approximations to f . Gaussian quadrature instead builds on the ortho-
gonal polynomial approach to functional approximation. All Newton-Cotes rules are of the form:∫ b

a

f(x)dx ≈
n∑
i=1

ωif(xi), (20)

for some quadrature nodes xi ∈ [a, b] and quadrature weights ωi. The key feature of Newton-Cotes
formulas is that the xi points are chosen arbitrarily, usually being the uniformly spaced nodes on [a, b],
and the ωi wights are chosen so that if f is locally a low degree polynomial then the approximation
(20) will be correct.

In contrast, Gaussian formulas are constructed by efficient choices of both the nodes and weights.
In general, the Gaussian approach is to find points {xi : i = 1, . . . , n} and weights {ωi : i = 1, . . . , n}
so as to make the approximation (20) of

∫
f a “good” one.

In order to accomplish this, we must define what we mean by a “good” quadrature formula. The
criterion we use is exact integration for a finite-dimensional collection of functions. More specifically,
we choose the weights and nodes so that the approximation is exactly correct when f is a low-order
polynomial. The remarkable feature of Gaussian quadrature is that it accomplishes this for spaces of
degree 2n− 1 polynomials using only n nodes and n weights.

Furthermore, Gaussian quadrature is more general than (20). For any fixed nonnegative weighting
function w(x), Gaussian quadrature creates approximations of the form:

∫ b

a

f(x)w(x)dx ≈
n∑
i=1

ωif(xi), (21)
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for some nodes xi ∈ [a, b] and positive weights ωi, and the approximation (21) is exact whenever f is
a degree 2n − 1 polynomial. Specifically, given a nonnegative function w(x) and the 2n-dimensional
family F2n−1 of degree 2n − 1 polynomials, we can find n points {xi}ni=1 ⊂ [a, b], and n nonnegative
weights {ωi}ni=1 such that:

∫ b

a

f(x)w(x)dx =

n∑
i=1

ωif(xi), ∀f ∈ F2n−1,

based on the following theorem.
Theorem (Judd (1998), p.258): Suppose that {ϕi(x)}∞k=0 is an orthogonal family of polynomials

with respect to w(x) on [a, b]. Furthermore define qk so that ϕk(x) = qkx
k + · · · . Let xi, i = 1, . . . , n

be the n zeros of ϕn(x). Then, a < xi < x2 < · · · < xn < b, and if f ∈ C(2n)[a, b], then

∫ b

a

w(x)f(x)dx =

n∑
i=1

ωif(xi) +
f (2n)(ξ)

q2
n(2n)!

,

for some ξ ∈ [a, b] and where:

ωi = − qn+1/qn
ϕ′
n(xi)ϕn+1(xi)

> 0.

Furthermore, the formula
∑n
i=1 ωif(xi) is the unique Gaussian integration formula on n nodes that

exactly integrates
∫ b
a
f(x)w(x)dx for all polynomials in F2n−1.

We develop a Gaussian quadrature scheme over any interval [a, b] using any weighting function. A
key substantive result of the above theorem is that Gaussian quadrature uses the zeros of the orthogonal
polynomials and that they lie in the interval [a, b]. Furthermore, the ωi weights are always positive,
avoiding the precision problems of high-order Newton-Cotes formulas. The formulas in theorem tell
us how to compute the necessary nodes and weights.

Gauss-Chebyshev quadrature: Integrals of the form:∫ 1

1

f(x)(1− x2)−
1
2 dx,

have the weighting function (1 − x2)−
1
2 , which is the weighting function defining Chebyshev polyno-

mials. To evaluate such integrals, we use the Gauss-Chebyshev quadrature formula:∫ 1

−1

f(x)(1− x2)−
1
2 dx =

π

n

n∑
i=1

f(xi) +
π

22n−1

f (2n)(ξ)

(2n)!
, ξ ∈ [−1, 1], (22)
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where the quadrature nodes are:

xi = cos

(
2i− 1

2n
π

)
, i = 1, . . . , n.

The Gauss-Chebyshev rule is particularly easy because of the constant weight, π/n, for each node and
the easy formula for the quadrature nodes. We will see below that integrals of this form arise naturally
when solving various functional equations.

Generally, most researchers do not compute integrals of the form in (22); instead, they compute
integrals of the form

∫ b
a
f(x)dx where the range of integration is [a, b] rather than [−1, 1], and where

the weight function, (1 − x2)−
1
2 , is missing in the integrand. To apply Gauss-Chebyshev quadrature,

we use the linear change of variables,

x =
2(y − a)

b− a
− 1,

to convert the range of integration to [−1, 1], and multiply the integrand by (1 − x2)−
1
2 /(1 − x2)−

1
2 .

This identity implies that:∫ b

a

f(y)dy =
b− a

2

∫ 1

−1

f

(
(x+ 1)(b− a)

2
+ a

)
(1− x2)

1
2

(1− x2)
1
2

dx.

We then use the Gauss-Chebyshev quadrature to evaluate the RHS, producing the approximation:∫ b

a

f(y)dy ≈ π(b− a)

2n

n∑
i=1

f

(
(xi + 1)(b− a)

2
+ a

)
(1− x2

i )
1
2 ,

where the xi are the Gauss-Chebyshev quadrature nodes over [−1, 1].
Gauss-Legendre quadrature: Integrals over [−1, 1] could use the trivial weighting function,

w(x) = 1, resulting in the Gauss-Legendre quadrature formula:

∫ 1

−1

f(x)dx =

n∑
i=1

ωif(xi) +
22n+1(n!)4

(2n+ 1)!(2n)!

f (2n)(ξ)

(2n)!
, ξ ∈ [−1, 1]. (23)

A linear change of variables is necessary to apply Gauss-Legendre quadrature to general integrals.
In general: ∫ b

a

f(x)dx ≈ b− a
2

n∑
i=1

ωif

(
(xi + 1)(b− a)

2
+ a

)
, (24)

where the ωi and xi are the Gauss-Legendre quadrature weights and nodes over [−1, 1].
The Gauss-Legendre formula is typical of the rapid convergence of Gaussian quadrature schemes.

Applying Stirling’s formula, n! ≈ exp(−n − 1)nn+(1/2)
√

2πn, to the error term in (23), we find that
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the error is bounded above by π4−nM , where

M = sup
m

[
max
−1≤x≤1

f (m)(x)

m!

]
.

For many functions, such as analytic functions, M is finite. This bound shows that if M is finite, the
convergence of Gauss-Legendre quadrature is of exponential order as the number of quadrature nodes
goes to infinity. Since Newton-Cotes formulas are only polynomial in convergence, Gauss-Legendre
quadrature is much better when f is C∞ and its derivatives are tame. The same considerations show
that the Gauss-Chebyshev error is also proportional to 4−nM .

Gauss-Legendre integration can be used to compute discounted sums over finite horizons. For
example, suppose that consumption at time t equals c(t) = 1 + t/5− 7(t/50)2,where 0 ≤ t ≤ 50. The
discounted utility is

∫ 50

0
exp(−ρt)u(c(t))dt, where u(c) is the utility function and ρ is the pure rate of

time preference. Let ρ = 0.05 and u(c) = c1+γ/(1 + γ). We can approximate the discounted utility
with (24).

Gauss-Hermite quadrature:
Gauss-Hermite quadrature arises naturally because normal random variables are used often in

economic problems. To evaluate
∫∞
−∞ f(x) exp(−x2)dx using n points, the Gauss-Hermite quadrature

rule uses the weights, ωi, and nodes, xi, i = 1, . . . , n, and is defined by:∫ ∞
−∞

f(x) exp(−x2)dx =

n∑
i=1

ωif(xi) +
n!
√
π

2n
f (2n)(ξ)

(2n)!
, ξ ∈ (−∞,∞).

Gauss-Hermite quadrature will be used in connection with normal random variables. In particular,
if Y is distributed N(µ, σ2), then:

E[f(Y )] = (2πσ2)−
1
2

∫ ∞
∞

f(y) exp

{
−(y − µ)2

2σ2

}
dy.

However, one must remember that to use Gauss-Hermite quadrature to compute such expectations, it
is necessary to use the linear change of variables, x = (y − µ)/

√
2σ, and use the identity:∫ ∞

−∞
f(y) exp

{
−−(y − µ)2

2σ2

}
dy =

∫ ∞
−∞

f(
√

2σx+ µ) exp(−x2)
√

2σdx.

Hence, the general Gauss-Hermite quadrature rule for expectations of functions of a normal random
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variable is:

E[f(Y )] = (2πσ2)−
1
2

∫ ∞
−∞

f(y) exp

{
− (y − µ)2

2σ2

}
dy

≈ 1√
π

n∑
i=1

ωif(
√

2σxi + µ),

where the ωi and xi are the Gauss-Hermite quadrature weights and nodes over [−∞,∞].
Examples of Gauss-Hermite quadrature to compute expectations arise naturally in portfolio theory.

For example, suppose that an investor holds one bond which will be worth 1 in the future and equity
whose value is Z, where Z ∼ N(µ, σ2). If he consumes his portfolio at a future date and his future
utility is u(c), then his expected utility is:

U = (2πσ2)−
1
2

∫ ∞
−∞

u(1 + exp(z)) exp

{
− (z − µ)2

2σ2

}
dz,

and the certainty equivalent is u−1(U).
Gauss-Laguerre quadrature: Exponential discounted sums are often used in economic problems.

To approximate integrals of the form I =
∫∞

0
f(x) exp(−x)dx, we use Gauss-Laguerre quadrature. In

this case w(x) = exp(−x), and the appropriate weights, ωi, and nodes, xi, i = 1, . . . , n, to use in (21)
are listed in Table 1 for various choices of n.

Table 1: Gauss-Laguerre quadrature

Source: Judd (1998)
Note: a(k) means a× 10k. An (xi, ω) entry for N means that x is a quadrature node in the N -point

formula, weight ω.
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The Gauss-Laguerre formulas are defined by:∫ ∞
0

f(x) exp(−x)dx =

n∑
i=1

ωif(xi) + (n!)2 f
(2n)(ξ)

(2n)!
, ξ ∈ [0,∞].

To compute the more general integral,
∫∞
a
f(y) exp(−ry)dy, we must use the linear change of

variables x = r(y − a), implying that:

∫ ∞
a

exp(−ry)f(y)dy ≈ exp(−ra)

r

n∑
i=1

ωif
(xi
r

+ a
)
,

where ωi and xi are the Gauss-Laguerre quadrature weights and nodes over [0,∞), respectively.
Gauss-Laguerre quadrature can be used to compute the present value of infinitely long streams of

utility or profits. For example, suppose that a monopolist faces a demand curve D(p) = p−η, η > 1,
and has unit cost of m(t) at time t. If unit costs change over time, say m(t) = a+ b exp(−λt), and the
interest rate is r, then discounted profits equal:

η

(
η − 1

η

)η−1 ∫ ∞
0

exp(−rt)m(t)1−ηdt. (25)

Table 2 displays the errors of several rules in computing (25) with a = 2, b = −1, and η = 0.8.
The errors in Table 2 follow an expected pattern. Since we are using the Laguerre formula, the

critical piece of the integrand is m(t)1−η. Gauss-Laguerre integration implicitly assumes that m(t)1−η

is a polynomial. When λ = 0.05, m(t) is nearly constant, but when λ = 0.2, m(t)1−η is not constant
and becomes less polynomial-like. Therefore it is not surprising that the errors are much larger when
λ = 0.2.

Table 2: Errors in computing (25) with Gauss-Laguerre rule

Source: Judd (1998)
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3.7 Monte Carlo Integration

One more technique to look at: The idea behind Monte Carlo integration is simple. Consider a random
variable x with CDF F (x). Then one can approximate the integral of the function h(x) with:

∫ b

a

h(x)dF (x) ≈
∑T
t=1 h(xt)

T
,

where {xt}Tt=1 is a series drawn from a random number generator corresponding to the distribution of
x. Although very simple there is one important disadvantage: it is not very accurate. Above we saw
that we can get an accurate answer with just a few quadrature nodes for a large class of functions.
Monte Carlo is subject to sampling variation and this only disappears at root n. Suppose we calculate
the mean of random variable with a uniform distribution on the unit interval. With T = 100 the
standard error is 0.029 which is 5.8% of the true mean. Even with T = 1000 we have a standard error
that is 1.8% of the true mean.

If one doesn’t have a CDF then one can use a uniform distribution. That is,∫ b

a

h(x)dx = (b− a)

∫ b

a

h(x)fab(x)dx,

where fab is the density of a random variable with a uniform distribution over [a, b], that is, fab =

(b− a)−1. Thus , one could approximate the integral with:

∫ b

a

h(x)dx ≈ (b− a)

∑T
t=1 h(xt)

T
,

where xt is generate using a random number generator for a variable that is uniform on [a, b].
Typically one doesn’t have access to true random numbers and one only has access to a computer

program that generates them. Therefore, these procedures are referred to as pseudo random numbers.
The computer program generates data that are (if it is a good program) indistinguishable from a true
series of random numbers. But the function that generates the series is deterministic (and chaotic) so
that one should be careful in using theorems for true random numbers to think about things like rates
of convergence.

3.8 Projection: a worked example

With all that out of the way, let’s work through an actual example. Suppose we have the following
model which is characterised by the consumption Euler equation, resource constraint, and law of
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motion for productivity:

c−γt = Et
[
βc−γt+1αZt+1k

α−1
t+1

]
,

ct + kt+1 = Ztk
α
t ,

lnZt+1 = ρ lnZt + εt+1,

where εt+1 ∼ N(0, σ2) and k0 and Z0 are given. We do not know the policy rules for this economy so
we will use function approximation and numerical integration to find them. Let us use the following
notation to define the true rational expectations solution:

ct = c(kt, Zt),

kt+1 = k(kt, Zt),

where we will approximate c(kt, Zt) with the polynomial Pn(kt, Zt;ψn).
What about k(kt, Zt)? Well, once we have ct, we can use the budget constraint to back out for

kt+1. Bare in mind, we could approximate ctand kt and then use their approximations to find kt+1.
But this is cumbersome. It’s far easier to just find ct first and then find kt+1. So we are solving for the
policy rule using function approximations, and let us first define the Euler equation error terms as:

e(kt, Zt) = −c−γt + Et
[
βct+1αZt+1k

α−1
t+1

]
,

where we will substitute out ct with Pn(kt, Zt;ψn).
But we run into our first issue: we only have one optimality condition (from the Euler equation)

and we have more than one coefficient for our polynomial approximation (Nn elements of ψn). For
example, we this is a second-order polynomial then we have six coefficients to pin down with just the
one Euler equation. What should we do? Define M grid points for {kt, Zt} (it could be something like
M = 100), so let’s rewrite things using grids for k and Z:

e(kt, Zt) = −c−γt + Et
[
βct+1αZt+1k

α−1
t+1

]
⇔ e(ki, Zi) = −c−γi + Et

[
βc

′

iαZ
′

i(k
′

i)
α−1

]
.

Then, replace ci with Pn(ki, Zi;ψn):

e(ki, Zi) = Pn(ki, Zi;ψi)
−γ − βαEt

[
Pn(k

′

i, Z
′

i ;ψn)−γZ
′

i(k
′

i)
α−1

]
,

and then make the appropriate substitutions for k
′

i and Z
′

i , using the AR(1) process (and remember
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it’s written in logs):

= Pn(ki, Zi;ψi)
−γ − βαEt

Pn
(
Zi, k

α
i − Pn(ki, Zi;ψn), exp {ρ lnZi + ε′} ;ψ

′

n

)−γ
× exp {ρ lnZi + ε′} [Ziki − Pn (ki, Zi;ψn)]

α−1

 .

Lastly, account for the expectations for ε′ and do the numerical integration (and, do not forget the
Jacobian term, 1√

π
!):

= Pn(ki, Zi;ψi)
−γ − βα

J∑
j=1

ωGH
j

{
Pn
(
Zik

α
i − Pn(ki, Zi;ψn), exp

{
ρ lnZi +

√
2σζGH

j

}
;ψn

)−γ
× exp

{
ρ lnZi +

√
2σζGH

j

}
[Ziki − Pn (ki, Zi;ψn)]

α−1

}
1√
π
,

where ωGH
i and ζGH

i are the Gauss-Hermite weights and nodes. This expression can be taken to the
computer, which will then solve for the coefficients of Pn so that e(ki, Zi;ψn) = 0 is approximately
satisfied. Adda and Cooper (2003) has a simple and concise explanation for ways to go about this, but
broadly there are two solvers and minimisation routines we can use: collocation and Galerkin.

Collocation: Used when M = Nn and to obtain ψn at which e(ki, Zi;ψn) = 0 for each grid point.
But the choice of the grid points is important, as you may run into the problem of interpolation.

Consider the following example. You get to evaluate a function a set of grid points that you select,
and you must guess the shape of the function between the grid points. Consider the ‘Runge’ function:

f(k) =
1

1 + k2
, k ∈ [−5, 5].

Look what happens when you select 11 equidistant grid points and interpolate by fitting a 10th order
polynomial (Figure 8a). As you increase the number of grid points on a fixed interval grid, oscillations
in tails grow more and more volatile. One can use the Chebyshev approximation theorem to distribute
more points in the tails (by selecting zeros of the Chebyshev polynomial) and get convergence in sup
norm (Figure 8b).
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Figure 8

(a) Function approximations with fixed interval grid

(b) Function approximations with Chebyshev Zeros

Source: Christiano and Fisher (2000)

Galerkin: Used when M > Nn where a minimisation routine is used to obtain ψn:

min
ψn

e(ki, Zi;ψn).

4 Perturbation

Here we show how perturbation techniques can be used to obtain first and higher-order Taylor expan-
sions of the true rational expectations policy function about the steady state. If this sounds familiar,
then it should – perturbation is what Dynare uses. We will also discuss the paper of Schmitt-Grohé
and Uribe (2004) that makes clear in which way uncertainty affects the policy rules obtained with
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perturbation solutions.
We also make clear what the difference is between the first-order approximation obtained with the

perturbation procedure and the first-order approximation obtained with what Benigno and Woodford
(2012) refer to as the naive LQ procedure. This is the linear solution one obtains using a quadratic
approximation of the objective function and a linear approximation of the constraints. T his LQ pro-
cedure does not generate, in general, the first-order Taylor expansion of the true rational expectations
solution. The reason is that the constraints are only approximated with first-order approximations.
The rational expectations solution is itself based on first-order conditions and so the correct first-order
Taylor expansion of the true policy rule includes second-order aspects of the objective function as well
as the constraints. Moreover, one cannot use a second-order approximation of the constraints because
the solution would no longer be linear and the whole convenience of the LQ framework disappears.

This result implies that it is better to get rid of the constraints by substituting out variables. This
is not always possible. Benigno and Woodford (2012) show that one can incorporate second-order
properties of the constraints into the Lagrangian and still have a standard LQ problem. Using a
simple example, we show why this procedure also results in a first-order Taylor expansion of the true
solution.

4.1 Case without uncertainty

Consider the standard growth model, where labour is exogenously set to unity and initial capital, k1,
is given:

max
{ct,kt+1}∞t=1

∞∑
t=1

βt−1 c
1−γ
t − 1

1− γ
,

subject to:
ct + kt+1 = kαt + (1− δ)kt.

The Euler equation is given by:

c−γt = βEt
[
c−γt+1

(
αkα−1

t+1 + 1− δ
)]
.

When we substitute out consumption using the budget constraint we get:

(kαt + (1− δ)kt − kt+1)
−γ

= β
(
kαt+1 + (1− δ)kt+1 − kt+2

)−γ (
αkα−1

t+1 + 1− δ
)
,

which is a second-order difference equation in kt. We are looking for a recursive solution of the form:

kt+1 = h(kt).
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More generally, we are looking for a solution to equations like:

f(x′′, x′, x) = 0, (26)

of the form:
x′ = h(x).

To simplify the notation we let (for now) x be a scalar. Define F (x) as:

F (x) ≡ f(h(h(x)), h(x), x).

Since h(x) is a solution to equation (26), we know that:

F (x) = 0.

Let x̄ be a fixed point of h(x). Thus,
x̄ = h(x̄).

The Taylor expansion of the solution, h(x), about x̄ is given by:

h(x) ≈ h(x̄) + (x− x̄)h′(x̄) +
(x− x̄)2

2
h′′(x̄) + · · ·

= x̄+ h̄1(x− x̄) + h̄2
(x− x̄)2

2
+ · · · .

So the goal is to find x̄, h̄1, h̄2, and so on.
Clearly, x̄ has to satisfy:

f(x̄, x̄, x̄) = 0.

Finding x̄ can be a non-trivial problem is f is a nasty non-linear function, but a good equation solver
combined with some decent initial conditions should do the trick. The key insight of the perturbation
procedure is to solve for the coefficients h̄i not simultaneously, but sequentially. So let’s start.

4.1.1 Finding the coefficient for the linear term, h̄1

For what follows below, it is important to understand that the functional form of f and numerical
values of parameter values that appear in f are known. Since:

F (x) = 0, ∀x,

we know that:
F ′(x) = 0, ∀x.
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The derivative of F is given by:

F ′(x) =
∂f

∂x′′
∂h(x′)

∂x′
∂h(x)

∂x
+
∂f

∂x′
∂h(x)

∂x
+
∂f

∂x
. (27)

Let:

∂f(x′′, x′, x)

∂x′′

∣∣∣∣
x′′=x′=x=x̄

= f̄1,

∂f(x′′, x′, x)

∂x′

∣∣∣∣
x′′=x′=x=x̄

= f̄2,

∂f(x′′, x′, x)

∂x

∣∣∣∣
x′′=x′=x=x̄

= f̄3.

Also, note that:
∂h(x)

∂x

∣∣∣∣
x=x̄

=
(
h̄1 + h̄2(x− x̄) + · · ·

)∣∣
x=x̄

= h̄1.

Using this in equation (27) we get:

F ′(x̄) = f̄1h̄
2
1 + f̄2h̄1 + f̄3 = 0.

Note that there are no approximations in obtaining this equation. That is, the first-order term of
the Taylor expansion of the true policy function is exactly pinned down by this equation. Solving
this quadratic equation for h̄1 corresponds to the standard problem of obtaining a solution from the
linearised first-order conditions. See, for example, the notes of Uhlig (1998). The concavity of the
utility function and the production function implies that the one solution corresponds to an explosive
time path and that the other root corresponds to the unique non-explosive solution of the system.

4.1.2 Finding the coefficient for the second-order term, h̄2

Given the solution for h̄1, it is actually relative simple to get the second-order term. Let’s calculate
F ′′(x) by differentiating the expression for F ′(x) in equation (27):

F ′′(x) =



(
∂2f

∂(x′′)2
∂h(x′)
∂x′

∂h(x)
∂x + ∂2f

∂x′′∂x′
∂h(x)
∂x + ∂2f

∂x′′∂x

)(
∂h(x′)
∂x′

∂h(x)
∂x

)
+ ∂f
∂x′′

(
∂h(x′)
∂x′

∂2h(x)
∂x2 + ∂2h(x′)

∂(x′)2
∂h(x)
∂x

∂h(x)
∂x

)
+
(

∂2f
∂x′∂x′′

∂h(x′)
∂x′

∂h(x)
∂x

∂2f
∂(x′)2

∂h(x)
∂x + ∂2f

∂x′∂x

)
∂h(x)
∂x

+ ∂f
∂x′

∂2h(x)
∂x2

+
(

∂2f
∂x∂x′′

∂h(x′)
∂x′

∂h(x)
∂x + ∂2f

∂x∂x′
∂h(x)
∂x + ∂2f

∂x2

)


. (28)
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This looks absolutely horrendous, but we can make it look less intimidating using subscripts to indicate
second-order derivatives evaluated about the steady state. For example:

∂f(x′′, x′, x)

∂x′′∂x

∣∣∣∣
x′′=x′=x=x̄

= f̄13,

and also:
∂2h(x)

∂x2

∣∣∣∣
x=x̄

=
(
h̄2 + h̄3(x− x̄) + · · ·

)∣∣
x=x̄

= h̄2.

So, we get:

F ′′(x) =



(
f̄11h̄

2
1 + f̄12h̄1 + f̄13

)
h̄2

1

+f̄1

(
h̄1h̄2 + h̄2h̄

2
1

)
+
(
f̄21h̄

2
1 + f̄22h̄1 + f̄23

)
h̄1

+f̄2h̄2

+
(
f̄32h̄

2
1 + f̄32h̄1 + f̄33

)


= 0.

We already solved for h̄1, and this equation is linear in the only unknown, h̄2. so this is an easy
equation to solve. Obtaining higher-order terms can be done by repeating this procedure – and all
higher-order terms can be solved from a linear system.

4.2 Is perturbation just a local procedure?

To better understand the formal ideas behind perturbation techniques you should check Judd (1998).
But the basic idea is the Implicit Function Theorem:

Theorem: Let H(x, y) : Rn+m → Rm be a continuously differentiable function and let Rn+m have
coordinates (x, y). Fix a point (x̄, ȳ) with H(x̄, ȳ) = 0. If the Jacobian matrix JH,y(x̄, ȳ) is invertible,
then there exists an open U of Rn containing x̄ such that there exists a unique and continuously
differentiable function h : U → Rm such that:

h(x̄) = ȳ,

and
H(x, g(x)) = 0, ∀x ∈ U.

Moreover, the partial derivatives of h in U are given by the matrix product:

∂h(x)

∂xj
= − [JH,y(x, h(x))]

−1

[
∂H(x, h(x))

∂xj

]
.

You may think that perturbation procedures can only provide local approximations and that these
techniques are not very good in evaluating the policy functions at values of the state variables that
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are not close to the steady state. It is important to realise though that for a smooth and sufficiently
differentiable function d(z), one can approximate d(z∗) well using a Taylor expansion about z̄ even
though one only uses information about d at a point that is far away from z∗ (namely z̄). The reason
is that for a regular function, the functional form of d at z∗ is also present in the derivatives of d at
z̄. For example, suppose that d(z) is a 10th-order polynomial. The value of d at z̄ together with the
10 derivatives at z̄completely pin down the function. The 10th-order Taylor expansion, thus, would
give a perfect approximation for any value z no matter how far away from z̄. The story, of course,
breaks down if there are non-differentiable components – See Figure 9 for how Taylor approximations
struggle to deal with the Runge function.

Figure 9: Taylor series expansions about 0 of the Runge function

Another example of Taylor expansions struggling: the log function, which is common throughout
economics. Surprisingly, Taylor series expansion does not provide a great global approximation. We
approximate log x by its k-th order Taylor series approximation about the point x = a:

log x = log a+

k∑
i=1

(−1)i+1 1

i

(
x− a
a

)i
.

This expression diverges as N →∞ for x such that |x−aa | ≥ 1.
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Figure 10: Taylor series expansion of the log function about x = 1

Also, in practice the question is whether low-order perturbation methods are accurate and how
they compare with low-order approximations obtained from global numerical solution procedures. For
example, suppose that the true policy rule is given by d(z) = z10 and z̄ = 0, then anything below a
10th order perturbation would result in a flat policy function, whereas the truth is not flat.

The following numerical example documents this. It also points out, however, that convergence
towards the truth as the order of the polynomial increases can display very strange patterns. The
function considered is a fifth-order polynomial equal to:

f(x) = −690.59 + 3202.4x− 5739.45x2 + 4954.2x3 − 2053.6x4 + 327.10x5,

defined on the interval [0.7, 2]. The five panels of Figure 11 plot the true function and the Taylor ap-
proximations about x = 1 from the first-order to the fifth-order. This function shows wild oscillations,
but the fifth-order Taylor expansion is identical to the truth. Interestingly, of the other approxima-
tions, the first-order is the best and the fourth-order is the worst. Note that the scale of the vertical
axis is very different in each of the five panels.
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Figure 11: Level approximations for the polynomial

This raises the question, what would convergence look like if one would use a different type of
polynomial. For example, suppose we think of f(x) as a function of z = log x. Thus:

f(x) = −690.59 + 3202.4 exp(z)− 5739.45 exp(2z) + 4954.2 exp(3z)− 2053.6 exp(4z) + 327.10 exp(5z).

The six panels of Figure 12 plot the Taylor expansions about z = 0 of order 1, 3, 5, 7, 9, and 12.
Again, convergence displays an odd pattern with the approximation actually first getting worse if one
goes beyond first-order and only around the 9th-order approximation does the approximation start
to resemble the truth and converges monotonically towards it. But note that even for the 7th-order
approximation the deviation from the truth is huge.
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Figure 12: Log level approximations for the polynomial

4.3 The case with uncertainty

Consider the standard growth model with uncertainty:

max
{ct,kt+1}∞t=0

Et
∞∑
t=0

βt
c1−γt − 1

1− γ
,

subject to:
ct + kt+1 = exp(Zt)k

α
t + (1− δ)kt, (29)
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where Zt is a stochastic productivity shock and the initial capital stock k0 is given. A typical law of
motion for Zt is given by:

Zt = ρZt−1 + σεt, (30)

where σ controls the amount of uncertainty.
The consumption Euler equation is given by:

c−γt = βEt
[
c−γt+1(α exp(Zt)k

α−1
t+1 + 1− δ)

]
. (31)

The budget constraint, law of motion for productivity, and consumption Euler equation give a system
of three equations in three unknowns. Such a system can be written as:

Ef(x, x′, y, y′) = 0,

where x is an nx × 1 vector endogenous and exogenous state variables and y is an ny × 1 vector of
endogenous choice/control variables. When applied to the stochastic growth model, we would have
that y = c and x = [k, Z].

When solving the model with perturbation techniques, we write the problem such that the amount
of uncertainty is controlled by one scalar parameter such as in σ. Even if there are multiple stochastic
driving processes one can still use one parameter to scale the amount of uncertainty. If σ = 0 then
there is no uncertainty. Again, the goal is to find the policy functions. To apply the perturbation
technique under uncertainty, we follow the following two steps.

4.3.1 Step one: Solution as a function of σ

The first step is to make explicit that σ enters the system of equations and that the policy functions
depend on the amount of uncertainty. For the standard growth model we have:

Ef([k, Z], [k′, ρZ + σε′], y, y′) = 0.

We are trying to solve for functions of the form:

y = g(x, σ),

and
x′ = h(x, σ) + σηε′,

where ε′ is an nε × 1 vector and η is an nx × ηε matrix. The policy functions depend on all the
structural parameter values, not just σ. But we will see below why we make explicit that it depends
on the amount of uncertainty. For example, for the standard growth model presented, these equations
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would be:
c = c(k, Z, σ),

and [
k′

Z ′

]
=

[
k′(k, Z, σ)

ρZ

]
+ σ

[
0

1

]
ε′.

4.3.2 Step two: Perturb about ȳ and x̄ and σ = 0

The second key step of the perturbation procedure is to take a Taylor expansion of the true solution
to the system about the steady state values of the variables and around σ = 0. That is, one starts at
the steady state but then allows uncertainty to increase.

A disadvantage of perturbation techniques is that the notation is a bit tedious. Below we will see
the notation that the literature has used and see how to do perturbation under uncertainty. Do not
be concerned about the difficult notation. Below, we will go back to the case of the standard model
and redo the analysis.

Let x̄ = h(x̄, σ) and ȳ = g(x̄, σ), giving:

f(x̄, x̄, ȳ, ȳ) = 0.

Define the following:

F (x, σ) = Etf [x, x′, y, y′] = 0

= Etf [x, h(xσ) + σηε′, g(x, σ), g(x′, σ)]

= Etf [x, h(x, σ) + σηε′, g(x, σ), g(h(x, σ) + σηε′, σ)].

This is a system of n = nx + ny equations in n unknowns. Since we are also perturbing σ(about 0),
the Taylor expansions of the true policy functions are given by:

g(x, σ) = g(x̄, 0) + gx(x̄, 0)(x− x̄) + gσ(x̄, 0)σ + · · · ,

and
h(x, σ) = h(x̄, 0) + hx(x̄, 0)(x− x̄) + hσ(x̄, 0)σ + · · · .

Let:

ḡx = gx(x̄, 0), ḡσ = gσ(x̄, 0), and

h̄x = hx(x̄, 0), h̄σ = hσ(x̄, 0).

The goal is to find the ny ×nx matrix ḡx, the ny × 1 vector ḡσ, the nx×nx matrix h̄x, and the nx× 1
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vector h̄σ. The total number of unknowns is thus:

(nx + ny)(nx + 1) = n(nx + 1).

We solve for these unknowns by imposing:

Fx(x̄, 0) = 0,

which gives us n× nx equations and:
Fσ(x̄, 0) = 0,

which gives us n equations.
To help with the exposition, we introduce some notation. In particular, we denote the derivative

of the i-th element of f with respect to the k-th element of z, for z ∈ {x, y}, with:

∂f i

∂zk
= [fz]

i
k.

To understand the notation consider the functions v = v(x) and w = w(x), which map Rn1 into Rn1

and a function D(v, w) which maps R2n1 into Rn2 . Now consider the function D(v(x), w(x)). The
derivative of the i-th element of D with respect to the j-th element of x is equal to:

∂Di(v(x), w(x))

∂xj
=

n1∑
kv=1

∂f i

∂vkv
∂vkv

∂xj
+

n1∑
kw=1

∂f i

∂wkw
∂wkw

∂xj
.

We will denote this by:

∂Di(v(x), w(x))

∂xj
= [fv]

i
kv [vx]kvj + [fw]ikw [wx]kwj .

That is, the index k showing up as a subscript and superscript in adjacent terms indicates the sum-
mation. Moreover, the subscript of k indicates over how many elements the summation is. That is, kv
implies summing from kv = 1 up to the number of elements of v.

We can use the same convenient notation if there are no derivatives involved. If η is an nx × nε
matrix and ε is an nε × 1 vector then:

nε∑
kε=1

ηi,kεk = [η]ikε [ε
′]kε ,

where ηi,k is the (i, k) element of η and εk is the k-th element of ε.
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Using this notation to calculate the n× nx derivatives of F with respect to x, we get:

[Fx(x̄, 0)]ij = [f̄x]ij + [f̄x′ ]ikh [h̄x]khj + [f̄y]ikg [ḡx]
kg
j + [f̄y′ ]

i
kg [ḡx]

kg
kh

[h̄x]khj = 0.

An upper bar over the function f indicates that the function is evaluated at the steady state values
of x and y and at σ = 0. Note that the h̄x and ḡx terms are multiplied. This is, thus, a second-order
system of equations in the nx × nx values of h̄x and the ny × nx values of ḡx. Although the notation
is new, this part of the perturbation routine is identical to what has been done for many years by
linearising the first-order conditions. But the perturbation procedure adds the hσ and gσ coefficients.
Those are solved from:

[Fσ(x̄, 0)]ij =



Et
[
[f̄x′ ]ikh [h̄σ]kh + [f̄x′ ]ikh [η]khkε [ε′]kε

]
+Et

[
[f̄y]ikg [ḡσ]kg

]
+Et

[
[f̄y′ ]

i
kg

[ḡx]
kg
kh

[h̄σ]kh + [f̄y′ ]
i
kg

[ḡx]
kg
kh

[η]khkε [ε′]kε
]

×Et
[
[f̄y′ ]

i
kg

[ḡσ]kg
]


= 0.

This gives us n equations to solve for ḡσ and h̄σ. Below we will show that these coefficients are zero
so that first-order perturbation will imply the same answer as “old fashioned” linearisation of the first
order conditions.

4.4 How does uncertainty matter?

The two important contributions of the perturbation procedure are that it allows for higher-order
approximation and that it is explicit about the role of uncertainty. The question arises how important
uncertainty is and whether it matters in lower-order approximations. Below we will discuss the very
important results from Schmitt-Grohé and Uribe (2004). These results are actually quite straightfor-
ward to derive using the notation developed above, but the notation also hides a bit of what is actually
going on. So let’s go back to the standard growth model and work out the equations in this simpler
setup.

In the standard growth model we would have:

F (x, σ) = Etf(k, Z, k′, Z ′, c, c′)

= Etf

k, Z, h(k, Z, σ)︸ ︷︷ ︸
k′

, ρZ + σε′︸ ︷︷ ︸
Z′

, g(k, Z, σ)︸ ︷︷ ︸
c

, g(h(k, Z, σ), ρZ + σε′, σ)︸ ︷︷ ︸
c′

 ,

where f represents the budget constraint, Euler equation, and the law of motion for Z. It thus maps
R6 into a 3× 1 vector.
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4.4.1 Uncertainty and the first-order perturbation

To obtain the coefficients ḡσ and h̄σ (which are scalars in this case), we use:

Fσ(x̄, 0) = 0,

so:

Fσ(x, 0) = Et

[
fk′(s)hσ(k, Z, σ) + fZ′(s)ε′ + fc(s)gσ(k, Z, σ)

+fc′(s) {gk(k′, Z ′, σ)hσ(k, Z, σ) + gZ(k′, Z ′, σ)ε′ + gσ(k′, Z ′, σ)}

]
, (32)

where s denotes the arguments of f , that is, s = [k, Z, k′, Z ′, c, c′]. Evaluating this expression at x̄ = 0

and calculating the expectation gives:

Fσ(x̄, 0) =
(
f̄k′ + f̄c′ ḡk

)
h̄σ +

(
f̄c + f̄c′

)
ḡσ = 0.

Note that this system gives us three equations, since f consists of three elements, in the two unknowns
ḡσ and h̄σ. But note that the equation corresponding to the law of motion of productivity gives 0 = 0,
so we are left with two equations in two unknowns.8 In particular, if we let f bc denote the element of f
corresponding to the budget constraint and feu the element of f corresponding to the Euler equation
we get: [

f̄ bck′ + f̄ bcc′ ḡk f̄ bcc + f bcc′

f̄euk′ + f̄euc′ ḡk f̄euc + f̄euc′

][
h̄σ

ḡσ

]
= 0

=⇒ ḡσ = h̄σ = 0,

and if there is no singularity in the system then this would be unique solution. this, of course,
corresponds to the certainty equivalence that one also obtains if linear policy rules are obtained using
the LQ procedure. Although we only show this result in a simple model, Schmitt-Grohé and Uribe
(2004) prove that this result holds in more general frameworks.

4.4.2 Uncertainty and second-order perturbation

The second-order Taylor expansions of the policy functions are:

h(k, Z, σ) = k̄ + h̄k(k − k̄) + h̄Z(Z − Z̄) + h̄σσ

+
1

2

{
h̄kk(k − k̄)2 + 2h̄kZ(k − k̄)(Z − Z̄) + 2h̄kσ(k − k̄)σ

+h̄ZZ(Z − Z̄)2 + 2h̄Zσ(Z − Z̄)σ + h̄σσσ
2

}
,

8ḡk is known. It is solved from Fx(x̄, 0) = 0.
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and

g(k, Z, σ) = c̄+ ḡk(k − k̄) + ḡZ(Z − Z̄) + ḡσσ

+
1

2

{
ḡkk(k − k̄)2 + 2ḡkZ(k − k̄)(Z − Z̄) + 2ḡkσ(k − k̄)σ

ḡZZ(Z − Z̄)2 + 2ḡZσ(Z − Z̄)σ + ḡσσσ
2

}
.

From the discussion above we know that ḡσ and h̄σ are equal to zero. We will now show that ḡkσ,
ḡZσ, h̄kσ, and h̄Zσ are equal to zero too. That is, the value of σ only shows up in the constant of the
policy rules. Consider for example, ḡkσ and h̄kσ. These are solved from:

Fkσ(x̄, 0) = 0.

We get the derivative by differentiating the expression in (32). This gives:

Fσk(x, σ) = Et



(fk′k + fk′k′hk + fk′cgk + fk′c′gkhk)hσ + fk′hσk

+(fZ′k + fZ′k′hk + fZ′cgk + fZ′c′gkhk)ε′

+(fck + fck′hk + fccgk + fcc′gkhk)gσ + fcgσk

+(fc′k + fc′k′hk + fc′cgk + fc′c′gkhk)(gkhσ + gZε
′ + gσ)

+fc′(gkkhkhσ + gkhσk)fc′gZkhkε
′ + fc′gσkhk


.

Note that the arguments of the functions are suppressed. Here we stop at the second-order. That is,
we are not going to differentiate further and suppressing arguments doesn’t matter. But if you do want
to go on and obtain higher-order terms, it is better not to do so. That is, the above notation doesn’t
make clear whether gk stands for gk(k, Z, σ) or gk(k′, Z ′, σ) = gk(h(k, Z, σ), Z ′, σ) and of course this
difference is important if you differentiate.

Evaluating the last expression about the steady state we get:

Fσk(x̄, 0) = f̄k′ h̄σk + f̄cḡσk + f̄c′(ḡkh̄σk) + f̄c′ ḡσkh̄k

⇔ 0 = (f̄k′ + f̄c′ ḡk)h̄σk + (f̄c + f̄c′)ḡσkh̄k.

Again, we have two independent equations (together with 0 = 0) in two unknowns ḡσk and h̄σk. The
solution is ḡσk = h̄σk = 0 and unless there is a singularity, this is the unique solution.

So only the constants ḡσσ and h̄σσ are affected by the amount of uncertainty. Do not underestimate
the importance of this. A difference value for the constant term in a policy rule implies that the system
will operate in a different part of the state space. For example, the higher coefficients can capture a
precautionary savings motive that induces agents to have on average higher capital stocks. Now if the
second-order terms of capital are not equal to zero then being in a different part of the state space also
implies that the response of the system depends on where you are. Consequently, different values for
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ḡσσ and h̄σσ can indirectly also affect how sensitive the economy is to shocks.

4.5 Why not all ways to LQ approximations are correct

A linear quadratic dynamic programming problem has a quadratic objective and linear constraints.
This problem the optimal linear regulator problem, is studied extensively and can be solved without
numerical error. Suppose that one has a problem which the problem is not quadratic and the constraints
not linear. One might be tempted to take quadratic approximation of the objective function and a
linear approximation to the constraints and then solve the optimal linear regulator problem. This turns
out not to be the right way to implement the LQ procedure in the sense that the linear solution does
not in general correspond to the first-order Taylor expansion of the true solution. We will document
this using a simple example. In particular, we will first give the set of equations that determine the
first-order solution of the perturbation procedure, which by construction gives the first-order Taylor
expansion of the true policy function. This makes clear that the correct first-order Taylor expansion
also depends on second-order terms of the constraint. Benigno and Woodford (2012) refer to this way
to take LQ approximations as the “naive LQ approximation”. Next we use the example to discuss a
modified LQ procedure that is correct.

WE focus on the following model:

max
x−y

min
λ

f(x, y, a) + λ(b− g(x, y, a)),

subject to:
λ ≥ 0.

Here f and g are scalar functions and x, y, and a are scalars as well. The simple structure will
be helpful in clarifying the points made but the arguments are much more general. The first-order
conditions can be written as:

fx(x, y, a)− λgx(x, y, a) = 0,

fy(x, y, a)− λgy(x, y, a) = 0,

g(x, y, a) = b.

The solution to this system of equations is:

x = hx(a),

y = hy(a),

λ = hλ(a).
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Using this, we can write the first-order conditions as:

fx(hx(a), hy(a), a)− λ(a)gx(hx(a), hy(a), a) = 0,

fy(hx(a), hy(a), a)− λ(a)gy(hx(a), hy(a), a) = 0,

g(hx(a), hy(a), a) = b.

The Taylor expansions of the policy functions are given by:

hx(a) = h̄x + h̄xa(a− ā) + h̄xaa(a− ā)2 + · · · ,

hy(a) = h̄u + h̄ya(a− ā) + h̄yaa(a− ā)2 + · · · ,

hλ(a) = h̄λ + h̄λa(a− ā) + h̄λaa(a− ā)2 + · · · .

The first-order derivatives evaluated about a = ā are h̄xa, h̄ya, and h̄λa . Differentiating the first-order
conditions and evaluating them about a = ā gives:

f̄xxh̄
x
a + f̄xyh̄

y
a + f̄xa − λ̄(ḡxxh̄

x
a + ḡxyh̄

y
a + ḡxa)− ḡxh̄λa = 0,

f̄yxh̄
x
xa + f̄yyh̄

y
a + f̄ya − λ̄(ḡyxh̄

x
a + ḡyyh̄

y
a + ḡya)− ḡyh̄λa = 0,

ḡxh̄
x
a + ḡyh̄

y
a + ḡa = 0.

This can be written as:f̄xx − λ̄ḡxx f̄xy − λ̄ḡxy −ḡx
f̄yx − λ̄ḡyx f̄yy − λ̄ḡyy −ḡy
−ḡy −ḡy 0


h̄

x
a

h̄ya

h̄λa

 =

−f̄xa + λ̄ḡxa

−f̄ya + λḡya

−ḡa

 . (33)

With this system we can solve for the first-order perturbation terms. Note that they depend on the
second-order properties of the constraints (ḡxx, ḡxy, and etc.). These would not show up when one
linearises the constraints.

4.6 Correct LQ procedure of Benigno and Woodford (2012)

There are different ways in which one can deal with the problem encountered above. One could try to
get rid of the constraints (or make them linear) by substituting out or redefining variables. This is not
always possible. Here we discuss a general LQ procedure for which the linear solution does correspond
to the first-order Taylor expansion. That is, it corresponds with the solution procedure implied by
equation (33). The standard formulation of the LQ approximation can be written as:

max
x,y

min
λ

f̄xx̃+ f̄y ỹ + f̄aã+
1

2
Λ̃
>

Φ̄Λ̃− λ(ḡxx̃+ ḡy ỹ − ḡaã), (34)
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where z̃ = z − z̄ and:

Λ̃ =

x̃ỹ
ã

 , Φ̃ =

f̄xx f̄xy f̄xa

f̄yx f̄yy f̄ya

f̄ax f̄ay f̄aa

 .
Now consider the second-order approximation of the constraint:

0 ≈ ḡxx̃+ ḡy ỹ + ḡaã+
1

2
Λ̃
>

Γ̃Λ̃,

where:

Γ̃ =

ḡxx ḡxy ḡxa

ḡyx ḡyy ḡya

ḡax ḡay ḡaa

 .
Next we multiply both sides of this expression by λ̄ and use the first-order conditions at the steady
state values, i.e., about a = ā. This gives:

λ̄ḡxx̃+ λ̄ḡy ỹ + λ̄ḡaã+
λ̄

2
Λ̃
>

Γ̃Λ̃, (35)

and subtracting this expression from the Lagrangian (34) (and ignoring constant terms) gives:

max
x,y

min
λ

1

2
Λ̃
> (

Φ̃− λ̄Γ̃
)

Λ̃ + λ (b− ḡ − ḡxx̃− ḡy ỹ − ḡaã) . (36)

By entering second-order properties of the constraint we have at least some chance of getting the
correct first-order Taylor expansion. Also note that the first-order terms have disappeared from the
objective function. This is already a convenient property. The linear solution that comes out of this is
going to be at best the correct first-order Taylor expansion. Consequently, it is in general wrong in the
second-order terms. But if you substitute such a policy function into the linear terms of the objective
function then the objective function also has second-order mistakes. But the objective function is
supposed to be the correct second-order approximation.

Anyway, we are really interested in knowing whether this leads to the correct first-order Taylor
expansion. To see this, calculate the first-order conditions of this problem. They are given by:f̄xx − λ̄ḡxx f̄xy − λ̄ḡxy −ḡx

f̄yx − λ̄ḡyx f̄yy − λ̄ḡyy −ḡy
−ḡx −ḡy 0


x̃ỹ
λ

 =

−f̄xa + λ̄ḡxa

−f̄ya + λ̄ḡya

−ḡa

 ã. (37)

But this system corresponds exactly to (33).
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4.6.1 Modification of the objective function and change in Lagrangian multiplier

The procedure outlined above boils down to subtracting the second-order formulation of the constraint
given in (35) from the original objective function given in (34). Thus, whenever the constraints hold,
this does not entail any change in the objective function since one would simply be adding zero to the
objective function, This is not true when the constraints are not satisfied, so we are indeed changing
the objective function. Note that the modification of the objective function results in a zero value
of the Lagrange multiplier when a = 0 even though in the original problem λ̄ > 0. Note that by
construction, the constraint does still hold with equality when a = 0. If one is interested in getting
the right value of λ that is close to that of the original problem, one can replace λ by (λ− λ̄) in (36).

This shift in the objective function does have an effect on the Lagrange multiplier. In fact, (37)
makes clear that when ã = 0, that the value of the Lagrange multiplier is equal to zero. In fact, (37)
makes clear that when ã = 0, that the value of the Lagrange multiplier is equal to zero.9 But we have
also seen that this shift does not have an effect on the first-order term that relates changes in ã to
changes in λ. An easy way to “undo” the effect of the shift of the objective function on the Lagrange
multiplier is to use the following modified LQ specification:

max
x,y

min
λ

1

2
Λ̃
> (

Φ̃− λ̄Γ̃
)

Λ̃ + λ̃ (b− ḡ − ḡxx̃− ḡy ỹ − ḡaã) . (38)

That is, we replace λ by λ̃ = λ − λ̄. Note that this is not a replacement of the Lagrange multiplier
term by its first-order approximation. This would give λ = λ̃+ λ̄. Obviously, replacing λ by λ̃ is just
a change in notation and the value for λ̃ obtained with (38) we will now get that λ̃ = 0 when ã = 0.
But this means that if we use (38) we get λ = λ̄ when ã = 0, which is the desired outcome.

9Note that although the Lagrange multiplier is zero, the constraint is still satisfied at ã = 0, it is just not binding.
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