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1 Introduction

Most economic data are generated using economic decision rules and state processes. There are three
ways to determine from the data what parameter values an economic agent used in the decision rules
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and state processes: calibration, reduced-form estimation, and structural estimation. Using reduced-
form estimation methods, the parameters can be estimated directly by specifying functional forms for
decision rules or state-transition equations, independent of behavioural theory – this will not be our
focus here.

These notes will cover calibration and structural estimation methods: generalised method-of-
moments (GMM) and the simulated method-of-moments (SMM). We will be focusing on the concepts
of DGSE model estimation, and so we will also cover maximum likelihood (ML) and the Kalman filter.

2 Calibration

The main idea of calibration is that you select model parameters (“pin them down”) by selected real-
world features. Calibration became mainstream in macroeconomics following the seminal paper by
Kydland and Prescott (1982). You choose parameter values on the basis of microeconomic evidence
and then to compare the model’s predictions concerning the variances and covariances (referred to as
“moments” or “business-cycle moments”) of various series with those in the data. Romer (2012) gives
a fairly concise summary of calibration in the context of the real-business-cycle (RBC) model.

Calibration has two potential advantages over estimating models econometrically. First, because
parameter values are selected on the basis of microeconomic evidence, a large body of information
beyond that usually employed can be brought to bear, and the models can therefore be held to a
higher standard. Second, the economic importance of a statistical rejection, or lack of rejection, of a
model is often hard to interpret. A model that fits the data well along every dimension except one
unimportant one may be overwhelmingly rejected statistically. Or a model may fail to be rejected
simply because the data are consistent with a wide range of possibilities.

To see how calibration works in practice, consider the baseline RBC model of Hansen (1985) and
Prescott (1986). Note that this model does not feature government, and the trend component of
technology is not assumed to follow a simple linear path; instead, a smooth but nonlinear trend is
removed from the data before the model’s predictions and actual fluctuations are compared.1

We consider the parameter values proposed by Hansen and Wright (1992). Based on data on factor
shares, the capital-output ratio, and the investment-output ratio, Hansen and Wright set α = 0.36,
δ = 0.025 per quarter, and β = 0.99 per quarter. Based on the average division of discretionary time
between work and non-work activities, they set b (the coefficient for the disutility of labour) to 2. They
choose parameters of the process for technology on the basis of the empirical behaviour of the Solow
residual,2

Rt ≡ ∆ lnYt − [α∆ lnKt + (1− α)∆ lnLt] .

1The data is detrended using a Hodrick-Prescott (HP) filter.
2The Solow residual is a measure of all influences on output growth other than the contributions of capital and labour

through private marginal products.
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Under the assumptions of RBC theory, the only such other influence on output is technology, and so
the Solow residual is a measure of technological change. Based on the behaviour of the Solow residual,
Hansen and Wright set ρA = 0.95 and the standard deviation of the quarterly εA’s to 1.1 percent.3

Table 1: Calibrated RBC Model verses Actual Data
US Data (1947-1991) Baseline RBC Models

σY 1.92 1.30
σC/σY 0.45 0.31
σI/σY 2.78 3.15
σL/σY 0.96 0.49

Corr(L, Y/L) -0.14 0.93

Table 1 shows the model’s implications for some key features of fluctuations. The figures in the first
column are from actual US data; those in the second column are from the model. All of the numbers
are based on the deviation-from-trend components of the variables, with the trends found using the
non-linear procedure employed by Prescott and Hansen.

The first line of the table reports the standard deviation of output, σY . The model produces output
fluctuations that are only moderately smaller than those observed in practice. This finding is the basis
for Prescott’s famous conclusion that aggregate fluctuations are not just consistent with a competitive,
neoclassical model, but are predicted by such a model. The second and third rows of the table show
that both in the US and in the model, consumption is considerably less volatile than output, and
investment is considerably more volatile.

The final two lines of the table show that the baseline RBC model is less successful in its predictions
about the contributions of variations in labour input and in output per unit of labour input to aggregate
fluctuations. In the US economy, labour input is nearly as volatile as output; in the model it is much
less so. And in the US, labour input and productivity are essentially uncorrelated; in the model they
move together closely.

Thus, a simple calibration exercise can be used to identify a model’s major success and failures. In
doing so, it suggests ways in which the model might be modified to improve its fit with the data. For
example, additional sources of shocks would be likely to increase output fluctuations and to reduce the
correlation between movements in labour input and in productivity. Indeed, Hansen and Wright show
that, for their suggested parameter values, adding government-purchases shocks lowers the correlation
of L and Y/L from 0.93 to 0.49; the change has little effect on the magnitude of output fluctuations,

3In addition, Prescott argues that, under the assumption that technology multiplies an expression of the form F (K,L),
the absence of a strong trend in capital’s share suggests that F (·) is approximately Cobb-Douglas. Similarly, he argues
on the basis of the lack of a trend in leisure per person and of studies of substitution between consumption in different
periods that

ut = ln ct + b(1− lt)
provides a good approximation to the instantaneous utility function. Thus, the choices of functional form are not
arbitrary.
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however.
Of course, calibration has disadvantages as well. DSGE models have long since moved away from

the highly Walrasian nature of RBC models. As a result, calibration exercises no longer rely on the
original idea of using microeconomic evidence to tie down essentially all the relevant parameters and
functional forms: given the models’ wide variety of features, they have some flexibility in matching
the data. As a result, we do not know how informative it is when they match important moments of
the data relatively well. Nor, because the models are generally not tested against alternatives, do we
know whether there are other, perhaps completely different, models that can match the moments just
as well.

Further, given the state of economic knowledge, it is not clear that matching the major moments
of the data should be viewed as a desirable feature of a model. Even the most complicated models
of fluctuations are grossly simplified descriptions of reality. It would be remarkable if none of the
simplifications had qualitatively important effects on the models’ implications. But given this, it is
hard to determine how informative the fact that a model does or does not match aggregate data is
about its overall usefulness.

It would be a mistake to think that the only alternative to calibration is formal estimation of fully
specified models. Often, the alternative is to focus more narrowly.4 Researchers frequently assess
models by considering the microeconomic evidence about the reasonableness of the models’ central
building blocks or by examining the models’ consistent with a handful of “stylised facts” that the
modellers view as crucial.

Unfortunately, there is little evidence concerning the relative merits of different approaches to
evaluating macroeconomic models – there is no ideal “cookbook” method to this. Researchers use
various mixes and types of calibration exercises, formal estimation, examination of the plausibility of
the ingredients, and consideration of consistency with specific facts. At this point, choices among these
approaches seem to be based more on researchers’ “tastes” than on a body of knowledge about the
strengths and weaknesses of the approaches.

3 Generalised Method of Moments

The generalised method of moments (GMM), formalised by Hansen (1982), is an estimation method
that exploits the sample moment counterparts of population moment conditions (orthogonality condi-
tions) of the data-generating process.

The idea of matching moments is similar to calibration: you parameterise by a set of moments
(features) of the data, and then you judge the model performance by a different set of moments.
Matching moments adds statistical rigour, as you estimate based on limited information and you can

4This was a key point that Toni Braun and Fumio Hayashi stressed in their seminars and lectures.
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conduct hypothesis testing. We won’t go over all the background of GMM and SMM,5 but we will go
through a brief overview of GMM.

3.1 Review of method of moments estimation

Consider the χ2 distribution. Recall that if the random vector, z, is such that its components z1, ..., zk
are mutually independent standard normal random variables. An easy way to express this is to write
z ∼ N (0, I). Then, the random variable

X ≡ ‖z‖2 = z>z =

k∑
i=1

z2i ,

is said to follow the χ2 distribution with k degrees of freedom. Suppose that we have an IID sample
(x1, ..., xT ), and are interested in estimating k. How do we go about doing this?

A very natural way to estimate parameters – and, as an alternative to ML estimation – is to replace
population means by sample means. This technique is called the method of moments (MM), and it is
one of the most widely-used estimation methods in statistics. As the name implies, it can be used with
moments other than the mean. In general, MM estimates population moments by the corresponding
sample moments. In order to apply this method, we must use the facts that population moments are
expectations, and that regression models are specified in terms of the conditional expectations of the
error terms.

Here, our first two moments are

m1(k) ≡ E[X] = k,

m2(k) ≡ E[X2] = k(k + 2).

The sample estimate of the first moment is given by

1

T

T∑
t=1

xt,

so the MM estimator of k using the first moment is

1

T

T∑
t=1

xt = k̂.

The moment condition is
m1(k) ≡ E[X] = k,

5Separate notes based on Davidson and MacKinnon (2004) and Hayashi (2000) are available for this.
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and the sample equivalent of the moment condition is

m̂1 =
1

T

T∑
t=1

xt = k̂.

We write the MM estimator so that the moment condition is equal to zero. The population moment
condition is:

m1(k) ≡ E[z]− k = 0,

and the sample moment condition is:

m̂1(k̂) ≡ 1

T

T∑
t=1

zt − k̂ = 0.

We could’ve also used the second moment to estimate m:

m2(k) ≡ E[X2] = k(k + 2),

where the sample equivalent of the second moment is

m̂2 ≡
1

T

T∑
t=1

x2t ,

so the MM estimator of k solves the following moment condition

m̂2 ≡
1

T

T∑
t=1

x2t − k̂(k̂ + 2) = 0.

3.1.1 Example: Estimating the simple linear regression model

Let us review MM estimation for the simple linear regression model,

yt = β1 + β2xt + ut.

The error term for observation t is
ut = yt − β1 − β2xt,

and, according to classical assumptions, the expectation of this error term is zero. Since we have T
error terms for a sample size of T , we can consider the sample mean of the error terms:

1

T

T∑
t=1

ut =
1

T

T∑
t=1

(yt − β1 − β2xt). (1)
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We would like to set this sample mean equal to zero.
Suppose to begin with, we assume β2 = 0. This reduces the number of parameters in the model

to just one. In that case, there is just one value of β1 which allows the RHS of (1) to equal zero. The
equation defining this value is

1

T

T∑
t=1

(yt − β1) = 0.

Since β1 is common to all the observations and thus does not depend on the index t, we can write this
as

1

T

T∑
t=1

yt − β1 = 0,

which gives us the estimate of β1:

β̂1 =
1

T

T∑
t=1

yt.

Thus, if we wish to estimate the population mean of the yt, which is what β1 is in our model when
β2 = 0, MM estimation tells us to use the sample mean as our estimate.

Now, put β2 back into our model:

1

T

T∑
t=1

(yt − β1 − β2xt) = 0. (2)

But this is one equation with two unknowns. In order to obtain another equation, we can use the
fact that our model specifies that the mean of ut is 0 conditional on the explanatory variable, xt.
The conditional mean assumption implies that not only is E[ut] = 0 (through the Law of Iterated
Expectations (LIE)), but that E[xtut] = 0 as well:

E[xtut] = E[E[xtut|xt]] = E[xtE[ut|xt]] = 0.

Thus, we can supplement (2) by the following equation, which replaces the population mean above by
the corresponding sample mean,

1

T

T∑
t=1

xt(yt − β1 − β2xt) = 0. (3)

Thus, we have two equations, (2) and (3), with two unknowns, β1 and β2.
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Since β1 and β2 do not depend on t, these two equations can be written as

β1 +

(
1

T

T∑
t=1

xt

)
β2 =

1

T

T∑
t=1

yt,(
1

T

T∑
t=1

xt

)
β1 +

(
1

T

T∑
t=1

x2t

)
β2 =

1

T

T∑
t=1

xtyt,

or in matrix form as: [
T

∑T
t=1 xt∑T

t=1 xt
∑T
t=1 x

2
t

][
β1

β2

]
=

[ ∑T
t=1 yt∑T
t=1 xtyt

]
. (4)

Equations (4) can be rewritten much more compactly (given our moment conditions):

y = Xβ + u.

Thus, it is clear that we can rewrite those equations as

X>Xβ = X>y,

which, of course, yields the famous OLS estimator

β̂OLS = (X>X)−1X>y.

Thus, it should be quite obvious that the OLS estimator is a special case of the MM estimator.

3.2 General moment conditions

OLS is a special case of MM, and moment estimators are a much more general class of estimators than
OLS. The general formulation is that if zt is a vector stationary data, such as

zt = (xt),

zt = (xt, yt)
>,

and we let θ denote the vector of parameters to be estimated, then the moment conditions can be
written as

g(θ) ≡ E[h(θ, zt)] = 0.

Theorem 1 (Properties of the MM Estimator). Let h(θ, zt) be a k × 1 vector of moment conditions,
where θ is a k × 1 vector of parameters and zt is a sequence of stationary data.
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The MM estimator, θ̂, sets the sample moment conditions to zero:

1

T

T∑
t=1

h(θ̂, zt) = 0.

Under some mild technical conditions, the MM estimator has the following properties:
1) The estimator is consistent: θ̂n

p→ θ.
2) The estimator is asymptotically normal and root-n consistent:

√
n(θ̂n − θ)

d→ N (0,V).

In the χ2(k) example, with the first moment we had g1(k, xt) = xt−k, and with the second moment
we had g2(k, xt) = x2t−k(k+2). In the univariate OLS case we have h(β, (xt, yt)) = xtut = xt(yt−xtβ).
The MM estimator sets the sample mean of the moment conditions to 0, which we can write as the
following for the scalar case:

g(θ̂) =
1

T

T∑
t=1

h(θ̂, zt) = 0.

Note that when the LLN applies, we can replace the population moment by the empirical moment.
In the multivariate case, where Xt is a 1× k row vector and β is a k × 1 vector,

y = Xβ + u,

where we now have k moment conditions:

E [h(β; (Xt, yt)] = E[X>t ut] = 0,

where have k moment conditions for k parameters.
The sample analog is:

1

T

T∑
t=1

X>t (yi −Xtβ̂) = 0,

β̂MM =

(
T∑
t=1

X>t Xt

)−1( T∑
t=1

X>t yt

)
.

Recall that if the assumption of E[X>t ut] = 0 is violated, OLS is inconsistent and biased. In such
a case we can use an instruments, say Zt, that are correlated with Xt but uncorrelated with ut. The
MM moment condition is thus

E[Z>t ut] = 0,

10
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and the sample analog becomes

1

T

T∑
t=1

Z>t (yt −Xtβ̂) = 0,

β̂MM =

(
T∑
t=1

Z>t Xt

)−1( T∑
t=1

Z>t yt

)
,

which is equal to the instrumental variable (IV) regressor.

3.2.1 MLE as GMM

Consider the log-likelihood function:

l =
1

n

n∑
i=1

log f(yi|xi;θ),

and the population expectation of the FOC:

E
[
∂l

∂θk

]
= 0.

The GMM sample equivalent is
1

n

n∑
i=1

∂ log f(yi|xi;θ)

∂θk
= 0,

and thus we have k nonlinear equations with k unknowns.

3.2.2 MM two-stage estimation with measurement error

Some factor models need to be estimated in two steps. Suppose we have returns of n different stocks.
First, estimate the “beta” of each stock i:

Ri,t = βiRM,t + ei,t.

Then, estimate the “factor risk premium” with β̂i as an explanatory variable:

µi = λβ̂i + ui,

where µi = E[Ri].
The problem here is that the first stage estimation of β̂i has estimation error that needs to be

accounted for in the second stage estimation. The solution to this is to stack both equations together

11
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and estimate θ = (β, λ) simultaneously:

g(θ) = E

[
etRM,t

uiβi

]
= E

[
(Ri,t − βRM,t)RM,t

(µi − βiλ)βi

]
= 0.

We will look again at this later, but this GMM system takes the effect of estimation uncertainty of
β̂i on the standard error of λ̂ correctly into account. GMM is useful for many multi-step estimation
methods.

3.3 From MM to GMM

So far in the simple examples considered, the number of moment conditions equal the number of
parameters – where we say that the MM is exactly identified. If there are more parameters than moment
conditions, then we say that the MM is under-identified and the parameters cannot be estimated. But
if the number of moment conditions exceeds the number of parameters, then we say that the MM is
overidentified, which is where we use GMM.

GMM is a versatile estimation method. It is consistent and asymptotically normal under mild
assumptions, but it does require a bit of a trick to use – we essentially have to convert a given problem
into a set of moment conditions. Once an estimator is written as a moment condition, we know it is
consistent and asymptotically normal. It’s not all roses, however: GMM can have poor small sample
properties – but then again, what estimation procedure doesn’t suffer from this.

The recommended texts are, as mentioned before, the wonderful texts by Davidson and MacKinnon
(2004) and Hayashi (2000). Hayashi probably provides the most in-depth treatment, and anyone
comfortable with least squares estimation and asymptotic theory will feel right at home; Davidson
and MacKinnon target those who are more familiar with orthogonal projection matrices. Either way,
they’re both good books. Cochrane (2005) is also good when it comes to framing asset pricing into
the GMM framework. We won’t go as deep as those books, but we’ll go over a brief overview.

Consider our previous example where X ∼ χ2(k). The first 2 moments were

m1(k) ≡ E[X] = k,

m2(k) ≡ E[X2] = k(k + 2).

In MM, we used either the first or second moment to estimate k. In GMM, we combine moment
conditions to estimate k. In MM, we have have as many moment conditions as parameters. hence,
we can pick the parameters to set the moment conditions exactly to zero. If we have more moment
conditions than parameters, not all moment conditions can be exactly satisfied. With GMM, we pick
the parameters that minimise a weighted average of the moment conditions.

12
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In the χ2(k) example, the moment conditions were

m1(k) ≡ E[X]− k = 0,

m2(k) ≡ E[X2]− k(k + 2) = 0.

Let m(k) = (m1(k),m2(k))> be the vector of moment conditions and let W be a symmetric positive
definite matrix:

W =

[
w11 w12

w21 w22

]
.

The GMM estimator of k minimises the quadratic form

m̂GMM = arg min
k

m(k)>Wm(k),

m(k)>Wm(k) = w11m1(k)2 + 2w12m1(k)m2(k) + w22m2(k)2.

Thus, we have the following population moments:

m1(k) ≡ E[X]− k = 0,

m2(k) ≡ E[X2]− k(k + 2) = 0,

and the sample equivalents:

m̂1(k) ≡ 1

T

T∑
t=1

xt − k = 0,

m̂2(k) ≡ 1

T

T∑
t=1

x2t − k(k + 2) = 0.

Suppose we had the given sample:

m̂1(k) ≡ 1

T

T∑
t=1

xt = 9.47,

m̂2(k) ≡ 1

T

T∑
t=1

x2t − k(k + 2) = 104.18.

The MM estimator for E[X]− k = 0 =⇒ k̂ = 9.47, which is a special case of GMM with

W =

[
1 0

0 0

]
.
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The MM estimator for E[X2]− k(k + 2) = 0 =⇒ k̂ = 9.26, which is a special case of GMM with

W =

[
0 0

0 1

]
.

We could also have something like

W =

[
1 0

0 1/10

]
,

which would lead to k̂ = 9.30.
So the question for us is: how do we pick the weighting matrix, W? Unfortunately, there’s no hard

rule for this. It comes down to intuition. You put more weight on moments that are “more informative”
about the true θ. This is akin to how we choose appropriate priors in Bayesian estimation.

GMM is a very powerful way of looking at an estimation problem. All we need is a moment
condition that holds.

3.4 The GMM methodology

Following Hansen (1982), suppose you have an economic model which implies a set of r moment
conditions that take the form

E[h(θ,Zt)] = 0,

where Zt is a 1× l vector of variables known at time t, and θ is a k × 1 vector of coefficients we seek
to estimate. The above is a population mean. The sample equivalent is

g(θ,Zt) ≡
1

T

T∑
t=1

h(θ,Zt).

The GMM estimator of θ is the value of θ that minimises the scalar6

Q(θ,Zt) = g(θ,Zt)
>Wg(θ,Zt), (5)

where W is a r × r positive definite weighting matrix.
If r = k, then the number of parameters to be estimated is equal to the number of moment

conditions. Then typically the objective function (5) will be minimised by setting

g(θ̂MM,Zt) = 0.

6Technically, the weighting matrix should be denoted as something like WT , which is positive semidefinite and
converges in probability to the positive definite matrix W.
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If r > k, we cannot set all moment conditions exactly to zero. Instead, we have

θ̂GMM = arg min
{
g(θ,Zt)

>Wg(θ,Zt)
}
.

The quadratic form can be minimised with respect to θ using analytic or numerical methods.

Theorem 2 (Hansen (1982)). If Zt are strictly stationary

g(θ,Zt)
p→ E [h(θ,Zt)] .

If h(θ,Zt) is continuous in θ, then the GMM estimator is consistent:

θ̂GMM
p→ θ0.

GMM is consistent for any positive semidefinite weighting matrix.

But how should we choose the weighting matrix? And what are the asymptotic properties of the
GMM estimator?

3.4.1 Example: Consumption CAPM

Consider the household stochastic discount factor, Mt,t+1, that prices an asset j with payoff Xj,t+1:

Pj,t = Et[Mt,t+1Xj,t+1],

Rj,t+1 =
Xj,t+1

Pj,t
=
Pj,t+1 +Dj,t+1

Pj,t
,

=⇒ E[Mt,t+1Rj,t+1] = 1.

Recall that the idea from consumption CAPM was that Mt,t+1 depends on consumption, Ct, and
preferences, U(Ct):

Et
[
β
U ′(Ct+1)

U ′(Ct)
Rj,t+1

]
= 1,

where we assume that the household is risk averse and has a well behaved utility function (e.g. CRRA-
form):

U(Ct) = βt
C1−γ
t

1− γ
,

U ′(Ct) = βtC−γt ,

=⇒ Et

[
β

(
Ct+1

Ct

)−γ
Rj,t+1 − 1

]
= 0.
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But notice that the last equation is a moment condition!
We can test whether this equation holds in the data. We have returns Rj,t+1 of the j = 1, ..., J

assets, aggregate consumption data for Ct, and the following:

E[h(θ,Zt)] = 0,

h(θ,Zt) = (h1(θ,Zt), ..., hJ(θ,Zt))
>,

hj(θ,Zt) = β

(
Ct+1

Ct

)−γ
Rj,t+1 − 1,

θ = (β, γ)>,

Zt = (R1,t, ..., RJ,t, Ct)
>.

There are J moment conditions (one for each asset) and 2 parameters. So, we have to pick a weighting
matrix.

One option is W = I – i.e., all moments have the same weight. But perhaps a better idea is to
follow what we do with GLS: observations are weighted according to their variance, so that we put
more weight on moments whose variance is smaller. If the data is IID:

W = S−1,

S = E
[
h(θ̂,Zt)h(θ̂,Zt)

>
]

= Var
(
h(θ̂,Zt)

)
.

The sample equivalent is

Ŵ = Ŝ−1,

Ŝ =
1

T

T∑
t=1

h(θ̂,Zt)h(θ̂,Zt)
>.

3.4.2 Example: The χ2 distribution

Recall that if the random vector, x, is such that its components x1, ..., xk are mutually independent
standard normal random variables. An easy way to express this is to write x ∼ N (0, I). Then, the
random variable

z =

k∑
i=1

x2i ∼ χ2(k).
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The first four moments are

m1(k) = k,

m2(k) = k(k + 2),

m3(k) = k(k + 2)(k + 4),

m4(k) = k(k + 2)(k + 4)(k + 6).

Suppose we have a sample of z = (z1, ..., zT )> observations. The moment conditions for the first two
moments are

g1(k, z) ≡ m1(k)− k = 0,

g2(k, z) ≡ m1(k)− k(k + 2) = 0.

The GMM estimator using the first 2 moments and W = I minimises[
m̂1(z)− k

m̂2(z)− k(k + 2)

]> [
1 0

0 1

][
m̂1(z)− k

m̂2(z)− k(k + 2)

]
.

Next, let’s compute GMM using the optimal W = S−1:

S =

[
S11 S12

S21 S22

]
= E

[
yt −m1(k)

y2t −m2(k)

][
yt −m1(k)

y2t −m2(k)

]>
,

where we have

S11 = Ey2t − 2m2
1 +m2

1 = k(k + 2)− 2 = 2k,

S12 = m3(k)−m1(k)m2(k) = k(k + 2)(k + 4)− k2(k + 2) = 4k(k + 2),

S22 = m4(k)− [m2(k)]2 = k(k + 2)(k + 4)(k + 6)− k2(k + 2)2 = 8k(k + 2)(k + 3).

Recall our earlier example:

m̂1(k) ≡ 1

T

T∑
t=1

xt = 9.47,

m̂2(k) ≡ 1

T

T∑
t=1

x2t = 104.18.
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For W = I, k̂ = 9.26, and so if we compute S for k = 9.26:

S =

[
18.51 416.78

416.78 10216.43

]
,

W = S−1 =

[
0.66 −0.03

−0.03 0.01

]
.

Thus, W = I and W = S−1 are very different. Optimal GMM puts almost all the weight on the first
moment.7

In practice, S cannot be computed analytically and has to be estimated. Many different estimators
for S have been proposed. The most popular one is the Newey-West (1987) estimator:

Ŝ =

q∑
j=−q

(
q − |j|
q

)
1

T

T−q∑
t=q+1

[
h(θ̂, zt)

] [
h(θ̂, zt−j)

]>
,

which down-weights higher-order autocorrelations, only autocorrelations up to lag q are used, q must
be chosen ex-ante, and Ŝ depends on θ̂ which in turn depends on Ŝ. Thus the procedure to estimate
S is iterative:

1. Obtain an initial estimate of θ, θ̂
(1)

, by minimising Q(θ, z) for a given weighting matrix, usually
W = I.

2. Use the initial estimate θ̂
(1)

to produce an initial estimate of Ŝ(1).

3. Re-minimise Q(θ, z) using the initial estimates Ŝ(1) to arrive at a new estimate, θ̂
(2)

.

4. One can continue iterating in this manner until estimates at successive iterations converge. In
practice, usually one stops at θ̂

(2)
.

Note that Ŝ is often close to being singular. Research has shown that computing Ŝ−1 is often numer-
ically unstable. The reason for this is that inverting large matrices is computationally difficult if they
are close to being singular.

In practice: If the units of all moments are comparable, then the most robust results are obtained
with W = I. If the units are different, then redefine the moments. The general rule of thumb is to
first try the identity matrix as the optimal weighting matrix before attempting to set W = Ŝ. If the
results are substantially different figure out why. Is Ŝ−1 poorly behaved? Is OLS very inefficient?
Think about similar tradeoffs when considering OLS vs GLS.

7Note, of course, the optimal weighting matrix depends on k, which we don’t know in practice.
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3.5 Asymptotic properties of GMM

Theorem 3 (Hansen (1982)). Assume that the stochastic process that generates the data Z is ergodic
and stationary. Under certian regularity conditions, the GMM estimator is asymptotically normal:

√
ng(θ,Zt)

d→ N (0,S),
√
n(θ̂ − θ)

d→ N
(
0, (DS−1D>)−1

)
,

where
D =

[
∂g1(θ̂,Zt)

∂θ> · · · ∂gr(θ̂,Zt)

∂θ>

]
.

The asymptotic normality of the GMM estimator is an important result. If an estimator can be
written as a moment condition, it is generally consistent and asymptotically normal. But the crucial
assumption is that the data is stationary.

Many standard problems can be written in GMM form. The real power of GMM is that one
framework can handle a lot of interesting problems. Usually the moment conditions are directly
implied by the definition of the estimator.

3.5.1 Example: OLS as a GMM estimator

We have our usual assumptions, starting with the data generating process (DGP):

y = Xβ + u,

with the moment conditions,

g(β,Zi) = E[h(Zi,β)] = E[X>i ui] = E[X>i (yi −Xiβ)] = 0,

where Zt = (Xt, yt). Note that Xt is 1× k, so there are k moment conditions for k parameters, hence
GMM is exactly identified in this case. The sample analog is:

1

n

n∑
i=1

X>i (yi −Xiβ̂) = 0,

β̂GMM =

(
1

n

n∑
i=1

X>i Xi

)−1(
1

n

n∑
i=1

X>i yi

)
,

and the GMM estimator is identical to the OLS estimator.
The GMM estimator is also asymptotically normal

√
n(θ̂ − θ)

d→ N
(
0, (DS−1D>)−1

)
.

19



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

How about the variance-covariance matrix (DS−1D>)−1?

D> =
∂g

∂β>
= −

(
1

n

n∑
i=1

X>i Xi

)
= −E

[
X>i Xi

]
.

For simplicity, let’s assume that Xi is a scalar, xi, and impose the OLS assumptions of homoskedasticity
and no serial correlation:

E [ui|xi, xi−1, ..., ut−1, ut−2, ...] = 0,

E
[
u2i |xi, xi−1, ..., ut−1, ut−2, ...

]
= σ2.

S =

∞∑
j=−∞

E [(xiui)(xi−jui−j)] =

∞∑
j=−∞

E [uiui−jxixi−j ]

= ...+ E [uiui−1xixi−1] + E
[
u2ix

2
i

]
+ E [uiui−1xixi+1] + ...

= ...+ E [E [ui|ui−1, xi, xi−1]ui−1xixi−1] + E
[
E
[
u2i |xi

]
x2i
]

+ E [E [ui|ui+1, xi, xi+1]ui+1xixi+1] + ....

Remember the moment condition E[xiui] = 0. Under the assumption of independent errors (i.e., no
serial correlation in ui), which implies that all terms j 6= 0 are equal to zero. Thus,

S =

∞∑
j=−∞

E [(xiui)(xi−jui−j)]

= E
[
u2ix

2
i

]
= E

[
E
[
u2i |xi

]
x2i
]

= σ2E
[
x2i
]
.

Recall that
√
n(θ̂ − θ)

d→ N
(
0, (DS−1D>)−1

)
,

the GMM variance-covariance matrix, (DS−1D>)−1 is

D> =
∂g

∂β>
= −

(
1

n

n∑
i=1

X>i Xi

)
= −E

[
X>i Xi

]
,

S = σ2E
[
X>i Xi

]
,

=⇒ (DS−1D>)−1 = σ2E
[
X>i Xi

]−1
.
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Putting everything together:

√
n(θ̂ − θ)

d→ N
(
0, (DS−1D>)−1

)
= N

(
0, σ2E

[
X>i Xi

]−1)
,

which is equal to the standard OLS asymptotic variance-covariance matrix. Note that in the finance
literature, the assumption of homoskedasticity if often violated. GMM allows for a simple correction
for heteroskedasticity. The White variance-covariance matrix:

S =

∞∑
j=−∞

E
[
(Xiui)

>(Xi−jui−j)
]

= E
[
u2iX

>
i Xi

]
,

so that
√
n(θ̂ − θ)

d→ N
(
0,E

[
X>i Xi

]−1 E [u2iX>i Xi

]
E
[
X>i Xi

]−1)
.

3.5.2 Correcting standard errors for serial correlation

So far we have assumed that errors are serially uncorrelated. GMM gives us an easy way to correct
the standard errors if the errors are serially correlated. The spectral density matrix is:

S =

∞∑
j=−∞

E
[
uiui−jX

>
i Xi−j

]
.

If errors are serially uncorrelated, then all the j 6= 0 terms are zeros; if errors are serially correlated,
all we need to do is to adjust S. The most popular estimator is from Newey-West (1987):

ŜNW =

q∑
j=−q

(
q − |j|
k

)
E
[
uiui−jX

>
i Xi−j

]
.

ŜNW is an example of a heteroskedasticity and autocorrelation consistent (HAC) standard error. One
of the powers of GMM is that it allows for an easy way to compute adjustment to standard errors – it
allows us to figure out in what way errors deviate from IID assumption and compute corresponding S.

3.5.3 Example: Estimating an MA(1) process by GMM

Consider an MA(1) process,
yt = εt + θεt−1,

which cannot be estimated by OLS. How about GMM? What are the moment conditions?
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We started out with the model:
E[h(θ,Zt)] = 0,

and the value of minimised objective function,

Q̂ = g(θ̂,Zt)
>Ŝ−1g(θ̂,Zt),

gives us an idea whether the model is “true” or not. If the model is “true”, Q̂ should be close to 0.
Thus, we test whether Q̂ = 0 or not. If we reject the null, then we reject the model. We then get
Hansen’s J-test:

J = nQ̂
d→ χ2(r − k),

which is widely used in finance and economics. It’s often used as a criterion to evaluate models.

3.5.4 Example: Consumption CAPM

Suppose we have

E [h(θ,Zt)] = 0,

h(θ,Zt) = (h1(θ,Zt), ..., hJ(θ,Zt))
>,

hj(θ,Zt) = β

(
Ct+1

Ct

)−γ
Xj,t+1

Pj,t
− 1,

θ = (β, γ)>.

The GMM estimator picks θ = (β, γ)> to make

Q̂ = g(θ̂,Zt)
>Ŝ−1g(θ̂,Zt),

as small as possible. The vector g(θ̂,Zt) = (g1(θ̂,Zt), ..., gJ(θ̂,Zt))
> tells us how much each moment

condition deviates from 0.
J = TQ̂

d→ χ2(r − a)

tells us whether we can reject the null that all moment conditions are equal to zero.

4 Simulated Method of Moments

The simulated method of moments (SMM) was first introduced into mainstream econometric discourse
by McFadden (1989). As the name suggests, it is a simulation-based GMM.

Let {x(ωi,θ)}ni=1 be a sequence of observed data, and let {x(ωsi ,θ)}ni=1 be a sequence of simulated
data for s = 1, 2, ..., S and for a given parameter value θ. The simulations are done by fixing θ and by
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using the nS draws of the shocks ωsi . We simply write xsi (θ) = x(ωsi ,θ) to save on notation. Denote

by m(xi) a r-dimensional vector of functions of the observed data (e.g., m(xi) =

[
xi

x2i

]
if one wants to

match the mean and variance of the process). The estimator for the SMM is defined as

θ̂ = arg min
θ


[

1

n

n∑
i=1

(
m(xi)−

1

S

S∑
s=1

m(xsi (θ))

)]>
Wn

[
1

n

n∑
i=1

(
m(xi)−

1

S

S∑
s=1

m(xsi (θ))

)] ,

where Wn is the weighting matrix. If we define

h(xi,θ) = m(xi)−
1

S

S∑
s=1

m(xsi (θ)), (6)

then SMM is a special case of GMM. We can then apply the results developed for GMM.
The idea is that the true moment E[m(xi,θ)] as a function of θ is unknown. We then replace this

moment with the simulated moment 1
S

∑S
s=1m(xsi (θ)).

4.1 Asymptotic properties of the SMM

Using results for GMM discussed earlier, we can establish the following properties as n → ∞ for a
fixed S.

The SMM estimator is consistent:
θ̂nS

p→ θ,

and it is asymptotically distributed as

√
n(θ̂nS − θ)

d→ N (0,ΩS),

where

ΩS =

(
1 +

1

S

)[
B>WB

]−1
B>WΣWB

[
B>WB

]−1
,

B ≡ E
[
∂m(xsi (θ))

∂θ

]
, ∀s, t,

Σ ≡ plim
n→∞

Var

(
1√
n

[
1

n

n∑
i=1

(m(xi)− E [m(xsi (θ))])

])
.

The optimal weighting matrix is given by

W =

[(
1 +

1

S

)
Σ

]−1
.
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Under this matrix, we have

√
n(θ̂nS − θ)

d→ N
(

0,

(
1 +

1

S

)[
B>Σ−1B

]−1)
.

To see how ΩS depends on the simulation runs, S, begin with the identity of the moment conditions
and multiply with

√
n:

g(θ, xi) ≡
1

n

n∑
i=1

h(θ, xi)

√
ng(θ, xi) =

1√
n

n∑
i=1

h(θ, xi)

=
1√
n

n∑
i=1

(
m(xi)−

1

S

S∑
s=1

m(xsi (θ))

)

=
1√
n

n∑
i=1

(
m(xi)−

1

S

S∑
s=1

m(xsi (θ)) + E [m(xi)]− E [m(xi)]

)

=
1√
n

n∑
i=1

(m(xi)− E [m(xi)])−
1√
n

n∑
i=1

(
1

S

S∑
s=1

m(xsi (θ))− E [m(xi)]

)

=
1√
n

n∑
i=1

(m(xi)− E [m(xi)])−
1√
n

1

S

n∑
i=1

S∑
s=1

(m(xsi (θ))−m(xi)) ,

where E[m(xi)] denotes the expectation of m(xi) under the stationary distribution, and we assume
a LLN with the simulation draws. Since the last two terms are independent, we can apply a CLT to
derive the asymptotic distribution given above.

Empirically, we can use any consistent estimate for B and Σ. In particular, we can use a HAC
estimate, Σ̂nS , for Σ. We can use a J-test to test overidentifying restrictions:

J = ng(θ̂nS , xi)
>Σ̂nSg(θ̂nS , xi)

d→ χ2(r − k).

4.1.1 Example: McFadden’s multinomial logit model

Let’s consider the GMM for discrete choice models – specifically, let’s look at the multinomial logit
model by McFadden (1987). For discrete choice models, the GMM estimator is defined as the parameter
value that solves the equations:

1

n

n∑
i=1

hi(Zi,θ) =
1

n

n∑
i=1

J∑
j=0

[dij − Pij(θ)] Z>ij = 0.
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The form can be seen as analogous to the form that the MM estimator takes for OLS:

1

n

n∑
i=1

X>i (yi −Xiβ) = 0,

or for the standard IV estimator:
1

n

n∑
i=1

Z>i (yi −Xiβ) = 0.

For the discrete choice setting, we have

1

n

n∑
i=1

J∑
j=0

[dij − Pij(θ)] Z>ij =
1

n

n∑
i=1

hi(Zi,θ)

= 0.

As the conditions are not linear in θ, one uses numerical optimisation techniques to find the values of
θ that minimises the GMM criterion function:

Q(θ) =

[
1

n

n∑
i=1

hi(Zi,θ)

]>
W

[
1

n

n∑
i=1

hi(Zi,θ)

]
.

There is a nice connection between the MM and the maximum likelihood approaches. Let the
instruments be the gradient of the log probabilities:

1

n

n∑
i=1

J∑
j=0

[dij − Pij(θ)] Z>ij =
1

n

n∑
i=1

J∑
j=0

[dij − Pij(θ)]
∂ logPij(θ)

∂θ

=
1

n

n∑
i=1

J∑
j=0

dij
∂ logPij(θ)

∂θ
− 1

n

n∑
i=1

J∑
j=0

Pij(θ)
∂ logPij(θ)

∂θ

=
1

n

n∑
i=1

J∑
j=0

dij
∂ logPij(θ)

∂θ
− 1

n

n∑
i=1

J∑
j=0

Pij(θ)
∂Pij(θ)

∂θ

1

Pij(θ)

=
1

n

n∑
i=1

J∑
j=0

dij
∂ logPij(θ)

∂θ
− 1

n

n∑
i=1

J∑
j=0

∂Pij(θ)

∂θ︸ ︷︷ ︸
=0

.

=
1

n

n∑
i=1

J∑
j=0

dij
∂ logPij(θ)

∂θ
.

The need for simulation arises when there is no closed form expression for Pij(θ). In the case of
simulated method of moments (SMM), we replace the exact choice probabilities, Pij(θ), with simulated
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probabilities, P̃ij(θ). Note here that an important feature of the estimator is that P̃ij(θ) enters the
expression linearly. Thus, if P̃ij(θ) is unbiased for Pij(θ), then

[
dij − P̃ij(θ)

]
Z>ij is unbiased for

[dij − Pij(θ)] Z>ij . By not taking a non-linear transformation of the simulated probabilities, we can
avoid simulation bias.

The cost of SMM is, however, a loss of efficiency. SMM is less efficient than even simulated maximum
likelihood (SML), unless the ideal instruments are used. However, these ideal instruments are function
of log P̃ij(θ) and thus introduce simulation bias. SMM is thus usually applied with non-ideal weights
implying a loss of efficiency.

We next define the asymptotic distribution of the SMM estimator. Assume fixed instruments, so
that the SMM estimator is defined by

1

n

n∑
i=1

J∑
j=0

[
dij − P̃ij(θ̂)

]
Z>ij =

1

n

n∑
i=1

h̃i(θ̂)

= h̃(θ̂)

= 0.

Note that we can express the value of the estimating equations at the true value as

h̃(θ0) = h̃(θ0) + [h(θ0)− h(θ0)] +
[
Erh̃(θ0)− Erh̃(θ0)

]
= h(θ0) +

[
Erh̃(θ0)− h(θ0)

]
+
[
h̃(θ0)− Erh̃(θ0)

]
= h(θ0) + Bias + Noise.

Rearranging the first-order Taylor expansions of h̃(θ̂) around θ0 gives us:

θ̂ − θ0 = −
(
Dθh̃(θ0)

)−1
h̃(θ0)

= −
(
Dθh̃(θ0)

)−1
(h(θ0) + Bias + Noise)

= −
(
Dθh̃(θ0)

)−1
(h(θ0) + Noise) .

If we have

√
nh(θ0)

d→ N (0,A),
√
nNoise d→ N

(
0, R−1S

)
,
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where A is the variance-covariance matrix of the non-simulated counterpart. We thus have:

√
n(θ̂ − θ0)

d→ N
(

0,
(
Dθh̃(θ0)

)−1 [
A +R−1S

] (
Dθh̃(θ0)

)−1)
,

and the asymptotic distribution of the SMM estimator is then

θ̂
d→ N

(
θ0,

1

n

(
Dθh̃(θ0)

)−1 [
A +R−1S

] (
Dθh̃(θ0)

)−1)
.

The key takeaways are: the SMM variance is greater than its non-simulated counterpart. In this
example, the difference is

1

nR

(
Dθh̃(θ0)

)−1
S
(
Dθh̃(θ0)

)−1
,

and if R rises with n at any rate then this extra variance disappears. Finally, as non-ideal instruments
are used, the estimator is less efficient than maximum likelihood.

5 The Kalman Filter

Sometimes in macroeconomics, we come across variables that play important roles in theoretical models
but which we cannot observe. Examples include the concept of potential output. For example, in many
Keynesian models, inflationary pressures are determined by how far actual output is from this time-
varying potential output series.

In reality, we do not observe potential output so is this concept even worth bothering with? Well,
just because a variable isn’t observable, that doesn’t mean we can’t make a guess as to how it is
behaving. For example, if our data moves in a way that would be consistent with a large increase
in potential output (perhaps GDP rises a lot but there are no signs of inflationary pressures) then
perhaps we should assume that it has indeed indeed increased.

In these notes, we will discuss methods for dealing with unobserved (or latent) variables in time
series, building towards a method known as the Kalman filter. We will see the Kalman filter again
when we discuss estimation of DSGE models.

Going back to our earlier point, suppose we see a big increase in output in the latest quarterly
data that is not accompanied by a burst of inflation. Does this mean we should assume there has been
a big change in potential output? Probably not. Potential output probably doesn’t move around a
lot from quarter to quarter and it is likely that there is a lot of fairly random noise in the quarterly
fluctuations in inflation. But there is also probably a useful signal in the data as well.

So we are dealing with a type of signal extraction problem: What’s the best way to extract a useful
signal from information that also contains useless noise?

Before diving into the Kalman filter, we need some definitions and preamble, as some of the notation
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used in Ljungqvist and Sargent (2018) is a bit strange.

5.1 Conditional expectations

Suppose we are interested in getting an estimate of the value of a variable, X. But we don’t observe X
but instead we observe a variable Z that we know to be correlated with X. Specifically, let’s assume
that X and Z are jointly normally distributed so that[

X

Z

]
∼ N

([
µX

µZ

]
,

[
σ2
X σXZ

σXZ σ2
Z

])
.

In this case, the expected value of X conditional on observing Z is

E[X|Z] = µX +
σXZ
σ2
Z

(Z − µZ).

Alternatively, if ρ is the correlation between X and Z, ρ = σXZ

σXσZ
then we can write

E[X|Z] = µX + ρ
σX
σZ

(Z − µZ).

The amount of weight you put on the information in Z when formulating an expectation for X depends
on how correlated Z is with X and on their relative standard deviation. If Z has a high standard
deviation (so it’s a poor signal) then you don’t place much weight on it.

In the multivariate case (which we will cover in more depth next), where X is an n-vector and
Z is an m-vector, there is a straightforward generalisation of the formula just presented. Denote the
covariance matrix of the variables in X as ΣXX, the covariance matrix of the variables in Z as ΣZZ,
and the matrix of covariances between the entries in X and Z as ΣXZ.

If all the variables are jointly normally distributed, then this can be written as[
X

Z

]
∼ N

([
µX

µZ

]
,

[
ΣXX ΣXZ

Σ>XZ ΣZZ

])
.

In this case, the expected value of X conditional on observing Z is

E[X|Z] = µX + ΣXZΣ−1ZZ(Z− µZ).

This formula will play an important role in our explanation of the Kalman filter.8

8In general, these conditional expectations of jointly normally distributed random variables are very hand to know
in macroeconometrics, especially when looking at Bayesian estimation.
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5.2 Stochastic linear difference equations

Let Xt ∈ Rn denote the time t state, with a Gaussian initial distribution, π0(X0), with mean µ0 and
variance Σ0, and that the transition density, π(X′|X), is Gaussian mean AX and variance CC>. 9

This specification pins down the joint distribution of the stochastic process {Xt}∞t=0 via

π(Xt) = π(Xt|Xt−1) · · ·π(X1|X0)πo(X0).

The joint distribution determines all moments of the process.
This specification can be represented in terms of the first-order stochastic linear difference equation

Xt+1 = AXt + CWt+1, (7)

for t = 0, 1, ..., where Xt is an n × 1 state vector, X0 is a random initial condition drawn from a
probability distribution with mean E[X0] = µ0 and covariance matrix E

[
(X0 − µ0)(X0 − µ0)>

]
= Σ0,

A is an n× n matrix, C is an n×m matrix, and Wt+1 is an m× 1 vector satisfying the following:

Assumption (A1). Wt+1 is an IID process satisfying Wt+1 ∼ N (0, I).

We can weaken this Gaussian assumption to focus only on first and second moments of the X

process. It is sufficient to make the weaker assumption:

Assumption (A2). Wt+1 is an m× 1 random vector satisfying:

E [Wt+1|Ωt] = 0, (8)

E
[
Wt+1W

>
t+1|Ωt

]
= I, (9)

where Ωt = [Wt,Wt−1, . . . ,W1,X0] is the information set at t, and E [·|Ωt] denotes the conditional
expectation. We impose no distributional assumptions beyond this assumption. A sequence {Wt+1}
satisfying (8) is said to be a Martingale difference sequence (MDS) adapted to Ωt.10

An even weaker assumption is:

Assumption (A3). Wt+1 is a process satisfying

E[Wt+1] = 0,

9An n× 1 vector, z, that is multivariate normal has the density function

φ(z) = (2π)−
1
2
n|Σ|−1/2 exp

{
−

1

2
(z− µ)>Σ−1 (z− µ)

}
,

where µ = E[z] and Σ = E
[
(z− µ)(z− µ)>

]
.

10Note that (8) by itself allows Wt+1 conditional on Ωt to be heteroskedastic.
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for all t, and

E[WtW
>
t−j ] =

I, if j = 0,

O if j 6= 0.

A process satisfying this assumption is said to be a vector of “white noise”.

Assumption A1 or A2 implies A3 but not vice versa. Assumption A1 implies A2 but not vice versa.
Assumption A3 is sufficient to justify the formulas that we report below for second moments. We
shall often append an observation equation Yt = GXt to Equation (7) and deal with the augmented
system:

Xt+1 = AXt + CWt+1, (10)

Yt = GXt. (11)

Here Yt is a vector variables observed at t, which may include some linear combinations of Xt. The
system made up of (10) and (11) is often called a linear state-space system.

5.2.1 Example: Scalar second-order autoregression

Assume that zt and wt are scalar processes and that

zt+1 = α+ ρ1zt + ρ2zt−1 + wt+1.

Represent this relationship as the systemzt+1

zt

1

 =

ρ1 ρ2 α

1 0 0

0 0 1


 zt

zt−1

1

+

1

0

0

wt,

zt =
[
1 0 0

] zt

zt−1

1

 ,
which has the form of (10) and (11).

5.2.2 Example: First-order scalar mixed moving average and autoregression

Let
zt+1 = ρzt + wt+1 + γwt.
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Express this relationship as [
zt+1

wt+1

]
=

[
ρ γ

0 0

][
zt

wt

]
+

[
1

1

]
wt+1,

zt =
[
1 0

] [zt
wt

]
.

5.2.3 Example: Vector autoregression

Let Zt be an n× 1 vector random variables. We define the VAR(4) system by a stochastic difference
equation

Zt+1 =

4∑
j=1

AjZt+1−j + CyWt+1, (12)

where Wt+1 is a MDS satisfying (8)-(9) with

X′0 =
[
Z0 Z−1 Z−2 Z−3

]
,

and Aj is an n× n matrix for each j. We can map this VAR into Equation (7) as follows:
Zt+1

Zt

Zt−1

Zt−2

 =


A1 A2 A3 A4

I O O O

O I O O

O O I O


︸ ︷︷ ︸

A


Zt

Zt−1

Zt−2

Zt−3

+


Cy

O

O

O

Wt+1, (13)

where O denotes a null matrix with the right dimensions for conformity. Define A as the state transition
matrix, and assume that A has all of its eigenvalues bounded in modulus below unity (within unit
circle). Then (12) can be initialised so that Zt is covariance stationary.

5.3 First and second moments

We can use Equation (7) to deduce the first and second moments of the sequence of random vectors
{Xt}∞t=0. A sequence of random vectors is called a stochastic process.

Definition (LS 2.4.1). A stochastic process, {Xt}, is said to be covariance stationary if it satisfies
the following two properties:

1. The mean is independent of time, E[Xt] = E[X0], ∀t .

2. The sequence of autocovariance matrices, E
[
(Xt+j − E[Xt+j ]) (Xt − E[Xt])

>
]
depends on the

separation between dates j = 0,±1,±2, ..., but not on t.
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We use the following definition too:

Definition (LS 2.4.2). A square real valued matrix A is said to be stable if all of its eigenvalues
modulus are strictly less than unity.11

We shall often find it useful to assume that (10)-(11) takes the special form[
X1,t+1

X2,t+1

]
=

[
ιι> O

O Ã

]
︸ ︷︷ ︸

A

[
X1,t

X2,t

]
+

[
O

C̃

]
Wt+1, (14)

where ι is the n× 1 unit vector, and Ã is a stable matrix. That Ã is a stable matrix implies that the
only solution of (Ã − I)µ2 = 0 is µ2 = 0 (i.e., 1 is not a stable eigenvalue of Ã). It follows that the
matrix A on the RHS of (14) has one eigenvector associated with a single unit eigenvalue:

(A− I)

[
µ1

µ2

]
= 0,

which implies µ1 is an arbitrary vector and µ2 = 0. The first equation of (14) implies X1,t+1 =

X1,0, ∀t ≥ 0. Picking the initial condition X1,0 pins down a particular eigenvector,

[
X1,0

0

]
, of A. As

we shall soon see, this eigenvector is our candidate for the unconditional mean of X that makes the
process covariance stationary.

We will make an assumption that guarantees that there exists an initial condition,

(µ0,Σ0) =
(
E[X0],E

[
(X− E[X0]) (X− E[X0])

>
])
, (15)

that makes the Xt process covariance stationary. Either of the following conditions works:

Condition (C1). All of the eigenvalues of A in (10)-(11) are strictly less than 1 in modulus.

Condition (C2). The state-space representation takes the special form (14) and all of the eigenvalues
of Ã are strictly less than 1 in modulus.

To discover the first and second moments of the Xt process, we regard the initial condition X0 as be-
ing drawn from a distribution with mean µ0 = E[X0] and covariance Σ0 = E

[
(X− E[X0]) (X− E[X0])

>
]
.

We shall deduce starting values for the mean and covariance that make the process covariance station-
ary, though our formulas are also useful for describing what happens when we start from other initial
conditions that generate transient behaviour that stops the process from being covariance stationary.

11This is related to the Blanchard-Kahn conditions for determinacy in DSGE models.
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Taking mathematical expectations on both sides of Equation (7) gives

E [Xt+1] = E [AXt + CWt+1]

µt+1 = Aµt, (16)

where µt = E[Xt]. We will assume that all of the eigenvalues of A are strictly less than unity in
modulus, except possible for one that is affiliated with the constant terms in the various equations.
Then, Xt possesses a stationary mean defined to satisfy µt+1 = µt, which from Equation (16) evidently
satisfies

(I−A)µ = 0, (17)

which characterises the mean, µ, as an eigenvector associated with the single unit eigenvalue of A.
The condition that the remaining eigenvalues of A are less than unity in modulus implies that starting
from any µ0,µt → µ.12

Notice that
Xt+1 − µt+1 = A(Xt − µt) + CWt+1. (18)

From this equation, we can compute the law of motion of the covariance matrices Σt ≡ E
[
(Xt − µt) (Xt − µt)

>
]
.

Thus,

E
[(

Xt+1 − µt+1

) (
Xt+1 − µt+1

)>]
= AE

[
(Xt − µt) (Xt − µt)

>
]

A> + CE
[
Wt+1W

>
t+1

]︸ ︷︷ ︸
=I

C>,

or
Σt+1 = AΣtA

> + CC>.

A fixed point of this matrix difference equation evidently satisfies

Σ∞ = AΣ∞A> + CC>. (19)

A fixed point, Σ∞, is the covariance matrix E
[
(Xt − µ) (Xt − µt)

>
]
under a stationary distribution

of X. Equation (19) is a discrete Lyapunov equation in the n× n matrix Σ∞.13

12To understand this, assume that the eigenvalues of A are distinct, and use the Jordan decomposition, A = PΛP−1,
where Λ is a diagonal matrix of the eigenvalues of A, arranged in descending order of magnitude, and P is a matrix
composed of the corresponding eigenvectors. Then Equation (16) can be expressed as µ∗t+1 = Λµ∗t , where µ∗t = P−1µt,
which implies that µ∗t = Λtµ∗0. When all eigenvalues but the first are less than unity, Λt converges to matrix of zeroes
except for the (1, 1) element, and µ∗t converges to a vector of zeroes except for the first element, which stays at µ∗0,1, its
initial value, which we are free to set equal to 1, to capture the constant. Then µt = Pµ∗t converges to P1µ∗0,1 = P1,
where P1 is the eigenvector corresponding to the unit eigenvalue.

13It can be solved using the doublej.m file from Ljungqvist and Sargent 2018.
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By virtue of (7) and (16), note that for j ≥ 0

(Xt+j − µt+j) = Aj(Xt − µt) + CWt+j + · · ·+ Aj−1CWt+1.

Postmultiplying both sides by (Xt − µt)
> and taking expectations shows that the autocovariance

sequence satisfies
Σt+j,t ≡ E

[(
Xt+j − µt+j

)
(Xt − µt)

>
]

= AjΣt. (20)

Note that Σt+j,t depends on both j, the gap between dates, and t, the earlier date.
In the special case that Σt = Σ∞ that solves the Lyapunov equation (19), Σt+j,t = Aj

0Σ∞ and
so depends on the gap j between time periods. In this case, an autocovariance matrix sequence
{Σt+j,t}∞j=0 is often called an autocovariogram.

Suppose that Yt = GXt. Then µy,t = E[Yt] = Gµt and

E
[(

Yt+j − µy,t+j
) (

Yt − µy,t
)>]

= GΣt+j,tG
>, (21)

for j = 0, 1, .... Equations (21) show that the autocovariogram for a stochastic process governed by a
stochastic linear difference equation obeys the nonstochastic version of that difference equation.

5.4 Population regression

This section explains the notion of a population regression equation. Suppose that we have a state-
space system as in (10)-(11),

Xt+1 = AXt + CWt+1,

Yt = GXt,

with initial conditions that make it covariance stationary. We can use the preceding formulas to
compute the second moments of any pair of random variables. These moments let us compare a linear
regression. Thus, let X be a 1 × p vector of random variables somehow selected from the stochastic
process {Yt} governed by the system (10)-(11).

For example, let p = 2m, where Yt is an m× 1 vector, and take X =
[
Y>t Y>t−1

]
for any t ≥ 1.

Let Y be any scalar random variable selected from the m × 1 stochastic process {Yt}. For example,
take Y = Yt+1,1 for the same t used to define X, where Yt+1,1 is the first component of Yt+1.

We consider the following least-squares approximation problem: find a p× 1 vector real numbers,
β, that attain

arg min
β

E [Y −Xβ]
2
. (22)

Here Xβ is being used to estimate Y , and we want the value of β that minimises the expected squared
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error. The FOC is:
E
[
X>(Y −Xβ)

]
= 0, (23)

which can be rearranged as
β =

(
E
[
X>X

])−1 E [X>Y ] . (24)

By using the formulas (17), (19), (20), and (21), we can compute E
[
X>X

]
and E

[
X>Y

]
for

whatever selection of X and Y we choose. The condition (23) is called the least-squares normal
equation – this should all be very familiar – and it states that the projection error Y −Xβ is orthogonal
to X. Therefore, we can represent Y as

Y = Xβ + ε, (25)

where E[X>ε] = 0. The above equation is called a population regression equation. The vector β

is called the population least-squares regression vector. The law of large numbers for continuous-
state Markov processes states conditions that guarantee that sample moments converge to population
moments – i.e.,

1

S

S∑
s=1

X>s Xs → E[X>X],

1

S

S∑
s=1

X>s Ys → E[X>Y ].

Under these conditions, sample least-squares estimates converge to β.

5.4.1 Multiple regressors

Now let Y be an n × 1 vector of random variables and think of regression solving the least-squares
problem for each of them to attain a representation

Y = ΓX> + ε, (26)

where Γ is now n×p and ε is n×1 vector least squares residuals. The population regression coefficients
are now given by

arg min
Γ

E
[
Y − ΓX>

]
,

with the following FOC:
E
[
(Y − ΓX>)X

]
= 0.

This yields
Γ = E [YX]

(
E
[
X>X

])−1
. (27)
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We will use this formula repeatedly to derive the Kalman filter.

5.5 Deriving the Kalman filter

As a fruitful application of the population regression formula (27), we derive the celebrated Kalman
filter for the state space system for t ≥ 0:

Xt+1 = AXt + CWt+1, (28)

Yt = GXt + Vt, (29)

where Xt is an n × 1 (hidden) state vector and Yt is an m × 1 vector of signals on the hidden state;
Wt+1 is a p× 1 vector IID distributed as N (0, I), and V ∼ N (0,R). We assume that Wt+1 and Vs

are orthogonal (i.e., E[Wt+1V
>
s ] = O) for all t+ 1 and s greater than or equal to 0. We assume that

X0 ∼ N (X̂0,Σ0). (30)

We assume that we observe Yt, ...,Y0 but not Xt, ...,X0 at time t. We know all first and second
moments implied by the structure (28)-(30).

System (28)-(30) is an example of a hidden Markov model. The stochastic process {Yt}∞t=0 is not
Markov, but the hidden process {Xt}∞t=0 is Markov, and so is the process {X̂t,Σt} that constitutes
sufficient statistics for the probability distributions of Yt conditional on [Yt−1,Yt−2, ...,Y0].

We work forward in time, start time t = 0 before we observe Y0. Specification (29) and (30) implies
that the condition distribution of Y0 is

Y0 ∼ N
(
GX̂0,GΣ0G

> + R
)
, (31)

which recall comes from (15). For t ≥ 0, let Yt = [Yt,Yt−1, ...,Y0]. We want to seek an expression
for the probability distribution of Yt condition on history Yt−1 that has a convenient recursive repres-
entation. The Kalman filter attains that by constructing recursive formulas for objects (X̂t,Σt) that
appear in the following generalisation of (31)

Yt ∼ N
(
GX̂t,GΣtG

> + R
)
. (32)

The objects (X̂t,Σt) characterise the population regression X̂t = E[Xt|Yt−1, ...,Y0] and the covariance
Σt = E

[
(Xt − X̂t)(Xt − X̂t)

>
]
.

At each date, our approach is to regress what we don’t know on what we know. Let’s start t = 0.
We arrive at date 0 knowing X̂0,Σ0. Then we observe Y0 and make some inferences. It will turn out
that among the objects with which we leave time t = 0 will be X̂1,Σ1. This gives a perspective from
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which “we are in the same situation at the start of period 1 that we were at the start of period 0”, an
insight that activates a recursion.

We use the insight that the information in Y0 that is new relative to the information (X̂0,Σ0)

that we knew before observing Y0 is A0 ≡ Y0 −GX̂0. Thus, before we observe Y0, we regard X0

as a random vector with mean X̂0 and covariance matrix Σ0. Then we observe the random vector
Y0 linked to X0 by the time 0 version of Equation (29). We form revised beliefs about the mean of
X0 after observing Y0 by computing the distribution of X0 conditional on Y0. The conditional mean
E[X0|Y0] = X̂0 +L0(Y0−GX̂0) satisfies the appropriate version of the population regression formula
(27), namely,

X0 − X̂0 = L0(Y0 −GX̂0) + η, (33)

where η is vector of least squares residuals whose orthogonality to (Y0 −GX̂0) characterises L0 as
population least squares regression coefficients. The least squares orthogonality conditions are

E
[
(X0 − X̂0)(Y0 −GX̂0)>

]
= L0E

[
(X0 −GX̂0)(Y0 −GX̂0)>

]
.

Evaluating the moment matrices and solving for L0 gives the formula

L0 = Σ0G
>(GΣ0G

> + R)−1. (34)

Having constructed E[X0|Y0], we can construct X̂1 = E[X1|Y0] as follows.14 Equation (28) implies
E[X1|X̂0] = AX0 and that

X1 = AX̂0 + A(X0 − X̂0) + CW1. (35)

Furthermore, applying (33) shows that E[X1|Y0] = AX̂0 + AL0(Y0 −GX̂0), which we express as

X̂1 = AX̂0 + K0(Y −GX̂0), (36)

where
K0 = AΣ0G

>(GΣ0G
> + R)−1.

Subtract (36) from (35) to get

X1 − X̂1 = A(X0 − X̂0) + CW1 −K0(Y0 −GX̂0). (37)

Use this equation and Y0 = GX0 + V0 to compute the following formula for the conditional variance,
14It is understood that we know X̂0. Instead of writing E[X1|Y0, X̂0], we choose simply to write E[X1|Y0], but we

intend the meaning to be the same. More generally, when we write E[Xt|Yt−1], it understood that the mathematical
expectation is also condition on X̂0.
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E
[
(X1 − X̂1)(X1 − X̂1)>

]
= Σ1:

Σ1 = (A−K0G)Σ0(A−K0G)> + (CC> + K0RK>0 ). (38)

Thus, we have deduced the conditional distribution, X1|Y0 ∼ N (X̂1,Σ1). Collecting equations, we
can write

a0 = Y0 −GX̂0, (39)

K0 = AΣ0G
>(GΣ0G

> + R)−1, (40)

X̂1 = AX̂0 + K0a0, (41)

Σ0 = CC> + K0RK>0 + (A−K0G)Σ0(A−K0G)>. (42)

Among the outcomes of system (39)-(42) is a conditional mean, covariance pair (X̂1,Σ1). It is appro-
priate to view system (39)-(42) as a mapping of a mean, covariance pair (X̂0,Σ0) into a mean, and a
covariance pair (X̂1,Σ1), with auxiliary intermediate outputs (a0,K0). The Kalman filter iterates on
this mapping to arrive at the following recursions for t ≥ 0:

at = Yt −GX̂t, (43)

Kt = AΣtG
>(GΣtG

> + R)−1, (44)

X̂t+1 = AX̂t + Ktat, (45)

Σt = CC> + KtRK>t + (A−KtG)Σt(A−KtG)>. (46)

System (43)-(46) is the Kalman filter, and Kt is called the Kalman gain. Substituting for Kt from
(44) allows us to rewrite (46) as

Σt+1 = AΣtA
> + CC> −AΣtG

>(GΣtG
> + R)−1GΣtA

>. (47)

This equation is known as a matrix Riccati difference equation that restricts a sequence of covari-
ance matrices {Σt}∞t=0.

5.5.1 The Kalman smoother

The Kalman filter is what is known as a one-sided filter: The estimates of states at time t are based
solely on information available at time t. No data after period t is used to calculate estimates of the
unobserved state variables. This is a reasonable model for how someone might behave if they were
learning about the state variables in real time. But researchers have access to the full history of the
data set, including all observations after time t.

For this reason, some macroeconomists generally estimate time-varying models using a method

38



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

known as the Kalman smoother. This is a two-sided filter that uses data both before and after time
t to compute expected values of the state variables at time t.15

5.6 Vector autoregressions and the Kalman filter

5.6.1 Conditioning on the semi-infinite past of Y

Under conditions summarised by Anderson et al. (1996), iterations on (44), (46) converge to time-
invariant K,Σ for any positive semidefinite initial covariance matrix Σ0. A time-invariant matrix
Σt = Σ that solves (46) is the covariance matrix of Xt around E

[
Xt|{Yt−1

−∞}
]
, where {Yt−1

−∞} denotes
the semi-infinite history of Ys for all dates on or before t− 1.16

5.6.2 A time-invariant VAR

Suppose that the fixed point of (46) just described exists. If we initiate (46) from this fixed point Σ,
then the innovations representations becomes time invariant:

X̂t+1 = AX̂t + Kat, (48)

Yt = GX̂t + at, (49)

where E[ata
>
t ] = GΣG>+R. Use (48) and (49) to express X̂t+1 = (A−KG)X̂t+KYt. If we assume

that the eigenvalues of A −KG are bounded in modulus below unity,17 we can solve the preceding
equation to get

X̂t+1 =

∞∑
j=0

(A−KG)jKYt−j .

Then solving (49) for Yt gives the VAR

Yt = G

∞∑
j=0

(A−KG)jKYt−j−1 + at, (50)

where by construction
E[atY

>
t−j−1] = O j ≥ 0.

The orthogonality conditions identity (50) as a VAR.
15Although, as explained by Pfeifer (2013), one should not use a two-sided filter when preparing data for a DSGE

model when using Dynare (with some exceptions, such as population stats). This is because of the backwards looking
nature of the state space solution system that Dynare constructs.

16The Matlab program kfilter.m from Ljungqvist and Sargent (2018) implements the time-invariant Kalman filter,
allowing for correlation between Wt+1 and Vt.

17Anderson et al. (1996) show assumptions that guarantee that the eigenvalues of A −KG are bounded within unit
circle.
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5.7 Applications of the Kalman filter

5.7.1 Muth’s reverse engineering exercise

Cagan (1956) and Friedman (1957) posited that to form expectations of future values of a scalar yt,
people use the following “adaptive expectations” scheme:

y∗t+1 = K

∞∑
j=0

(1−K)jyt−j ,

⇔ y∗t+1 = (1−K)y∗t +Kyt,

where y∗t+1 is the public’s expectation. Friedman used this scheme to describe people’s forecasts of
future income. Cagan used it to model their forecasts of inflation during hyperinflations. Cagan
and Friedman did not asset that the scheme is an optimal one, and so did not fully defend it. Muth
(1960) wanted to understand the circumstances under which this forecasting scheme would be optimal.
Therefore, he sought a stochastic process for yt such that the aforementioned equations would be
optimal. In effect, he posed and solved an “inverse optimal prediction” problem of the form “you give
me the forecasting scheme; I’ll find the stochastic process that makes the scheme optimal”. Muth
solved the problem using classical (nonrecursive) methods. The Kalman filter was first described in
print in the same year as Muth’s solution of this problem. The Kalman filter allows us to solve Muth’s
problem quickly.

Muth studied the model

xt+1 = xt + wt+1, (51)

yt = xt + vt, (52)

where yt, xt are scalar random processes, and wt+1, vt are mutual independent IID Gaussian random
processes with means of 0 and variances E[wwt+1] = Q, E[v2t ] = R, and E[vswt+1] = 0, ∀t, s. The
initial condition is that x0 is Gaussian with mean x̂0 and variance σ2

0 . Muth sought formulas for
x̂t+1 = E[xt+1|yt], where yt = [yt, ..., y0].

For this problem, A = 1, CC> = Q, and G = 1, making the Kalman filtering equations (from (44)
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and (47)) become:

Kt = AΣtG
>(GΣtG

> + R)−1,

=⇒ Kt =
σ2
t

σ2
t +R

, (53)

Σt+1 = AΣtA
> + CC> −AΣtG

>(GΣtG
> + R)−1GΣtA

>,

=⇒ σ2
t+1 = σ2

t +Q− σ4
t

σ2
t +R

=
σ2
t (R+Q) +QR

σ2
t +R

. (54)

Figure 1: Graph of f(σ2)

For Q = R = 1, Figure 1 plots the function f(σ2) = σ2(R+Q)+QR
σ2+R appearing on the RHS of (54)

for values σ2 ≥ 0 against the 45-degree line. Note that f(0) = Q. This graph identifies the fixed point
of iterations on f(σ2) as the intersection of f(·) and the 45-degree line. That the slope of f(·) is less
than unity at the intersection assures us that the iterations on f will converge as t → +∞ starting
from any σ2

0 ≥ 0.
Muth studied the solution of this problem as t→∞. Evidently, σ2

t → σ2
∞ ≡ σ2 is the fixed point
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of a graph like Figure 1. Then, Kt → K and the formula for x̂t+1 becomes

x̂t+1 = (1−K)x̂t +Kyt, (55)

where K = σ2

σ2+R ∈ (0, 1). This is a version of Cogan’s adaptive expectations formula. It can be shown
that K ∈ [0, 1] is an increasing function of QR . Thus, K is the fraction of the innovation at that should
be regarded as ‘permanent’ and 1−K is the fraction that is purely transitory. Iterating backward on
equation (55) gives

x̂t+1 = K

t∑
j=0

(1−K)yt−j + (1−K)t+1x̂0,

which is a version of Cagan and Friedman’s geometric distributed lag formula.
Using equations (51)-(52), we find that

E[yt+j |yt] = E[xt+j |yt] = x̂t+1, j ≥ 1.

This result along in conjunction with Equation (55) gives the optimal forecast of yt+j for all horizons
j ≥ 1. This finding is remarkable because for most processes, the optimal forecast will depend on the
horizon. That there is a single optimal forecast for all horizons justifies the term permanent income
that Friedman chose to describe the forecast if income in 1955.

The dependence of the forecast on horizon can be studied using the formulas

E[Xt+j |Yt−1] = AjX̂t,

E[Yt+j |Yt−1] = GAjX̂t.

In the case of Muth’s example,

E[yt+j |yt−1] = ŷt = x̂t, ∀j ≥ 0.

For Muth’s model, the innovations representation is

x̂t+1 = x̂t +Kat,

yt = x̂t + at,

where at = yt − E[yt|yt−1, yt−2, ...]. The innovations representation implies that

yt+1 − yt = at+1 + (K − 1)at. (56)

This equation represents {yt} as a process whose first difference is a first-order moving average process.
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Notice how Friedman’s adaptive expectations coefficient, K, appears in this representation.

5.7.2 Example: Jovanovic’s matching model

This is from a 1979 paper by Jovanovic. Let xt, yt be scalars with A = 1, C = 0, G = 1, R > 0. Let
x0 ∼ N (0, σ2

0). Interpret xt (which is evidently constant with this specification) as the hidden value
of θ, a “match parameter”. Let yt denote the history of ys, from s = 0 to s = t. Define

mt ≡ x̂t+1 ≡ E[θ|yt],

and
σ2
t+1 = E[θ −mt]

2.

Then, the Kalman filter becomes

mt = (1−Kt)mt−1 +Ktyt, (57)

Kt =
σ2
t

σ2
t +R

, (58)

σ2
t+1 =

σ2
tR

σ2
t +R

. (59)

The recursions are to be initiated from (m−1, σ
2
0), a pair that embodies all “prior” knowledge about

the position of the system. It is easy to see from Figure 1 that when CC> = Q = 0, σ2 = 0 is the limit
point of iterations on Equation (59) starting from any σ2

0 ≥ 0. Thus, the value of the match parameter
is eventually learned.

It is instructive to write Equation (59) as

1

σ2
t+1

=
1

σ2
t

+
1

R
.

The reciprocal of the variance is often called the precision of the estimate. According to this equation,
the precision increases without bound as t grows, and σ2

t+1 → 0.
We can represent the Kalman filter in the form

mt+1 = mt +Kt+1at+1,

which implies that
E[mt+1 −mt]

2 = K2
t+1σ

2
a,t+1,

where at+1 = yt+1 −mt and the variance of at is equal to σ2
a,t+1 = σ2

t+1 + R. This is because if we
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subtract yt+1 = mt + at+1 from yt+1 = xt+1 + vt+1 we get

at+1 = xt+1 −mt + vt+1

= xt+1 − x̂t+1 + vt+1.

The variance of this term is σ2
t+1 +R. This implies

E[mt+1 −mt]
2 =

σ4
t+1

σ2
t+1 +R

.

For convenience, we represent the law of motion of mt+1 by

mt+1 = mt + gt+1ut+1,

where gt+1 =
(

σ4
t+1

σ2
t+1+R

)1/2
and ut+1 is IID normal with mean zero and variance 1 constructed to obey

gt+1ut+1 ≡ Kt+1at+1.

5.8 Example: The LQ permanent income model

To review some key concepts covered (not just the Kalman filter) in this section, we now cover the linear
quadratic (LQ) savings problem whose solution is a rational expectations version of the permanent
income model of Friedman (1956) and Hall (1978).

The LQ permanent income model is a modification of the following savings problem. A consumer
has preferences over consumption streams that are ordered by the utility functional

Et
∞∑
s=0

βsu(ct+s), (60)

where Et is the expectation operator conditioned on the consumer’s time t information, ct is period
t consumption, u(ct) is a strictly concave one-period utility function, and β ∈ (0, 1) is the household
discount factor. The consumer maximises utility by choosing consumption and a borrowing plan,
{ct+s, bt+1+s}∞s=0 subject to the sequence of budget constraints

ct+s + bt+s = R−1bt+1+s + yt+s, (61)

where yt is an exogenous stationary endowment process, R is a constant gross risk-free interest rate, bt is
a one-period risk-free debt maturing at t, and b0 is a given initial condition. We assume that R−1 = β.
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For example, we might assume that the endowment process has the state-space representation

zt+1 = A22zt + C2wt+1, (62)

yt = Uyzt, (63)

where wt+1 is an IID process with mean zero and identity contemporaneous covariance matrix, A22 is
a stable matrix, its eigenvalues within unit circle, and Uy is a selection vector that identities y with
a particular linear combination of the z. We impose the following condition on the consumption and
borrowing plan:

Et
∞∑
s=0

βsb2t+s < +∞. (64)

This condition suffices to rule out Ponzi schemes. The state vector confronting the household at t

is

[
bt

zt

]
, where bt is its one-period debt falling due at the beginning of period t and zt contains all

variables useful for forecasting its future endowment. The FOCs for maximising (60) subject to (61)
are

Etu′(ct+1) = u′(ct). (65)

For the rest of this section, we assume the quadratic utility function

u(ct) = −1

2
(ct − γ)2,

where γ is a bliss level of consumption. Then (65) implies

Et[ct+1] = ct. (66)

Note that a linear marginal utility is essential for deriving (66) from (65). Suppose instead that we had
imposed the following more standard assumptions on the utility function: u′(c) > 0, u′′(c) < 0, u′′′(c) >

0, and c ≥ 0, like say with log utility. The Euler equation remains the same, but the fact that u′′′ < 0

implies via Jensen’s inequality that Etu′(ct+1) > u′(Etct+1). This inequality together with (65) implies
Etct+1 > ct (consumption is said to be a ‘submartingale’), so that consumption stochastically diverges
to +∞. The consumer’s savings also diverge to +∞.

Along with the quadratic utility specification, we allow consumption to be negative (hence why we
have the no-Ponzi condition) here.

To deduce the optimal decision rule, we have to solve the system of difference equations formed
by (61) and (66) subject to the boundary condition, (64). Solve the period budget constraint, (61),
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forward and impose limT→+∞ βT bT+1 = 0 to get

ct + bt = R−1bt+1 + yt,

ct+1 + bt+1 = R−1bt+2 + yt+1,

...

=⇒ ct + bt = R−1
(
R−1bt+2 + yt+1 − ct+1

)
+ yt

bt = R−1R−1bt+2 + yt +R−1yt+1 − (ct +R−1ct+1)

...

and with some cleaning up:

bt =

∞∑
j=0

βj(yt+j − ct+j). (67)

Imposing limT→+∞ βT bT+1 = 0 suffices to impose (64) on the debt path. Take conditional expectations
on both sides of (67) and use (66) and the LIE to deduce

bt =

∞∑
j=0

βjEtyt+j +
1

1− β
ct (68)

⇔ ct = (1− β)

 ∞∑
j=0

βjEtyt+j − bt

 . (69)

If we define the net interest rate, r, by β = R−1 = 1
1+r , we can write the above expression as

ct =
r

1 + r

 ∞∑
j=0

βjEtyt+j − bt

 . (70)

Equation (69) or (70) expresses consumption as equaling economic income, namely, a constant marginal
propensity to consume or interest factor, r

1+r , times the sum of nonfinancial wealth and financial wealth.
Note also that these expressions represents ct as a function of the states confronting the household,
where from (62)-(63) zt contains the information useful for forecasting the endowment process.

5.8.1 Another representation

Pulling together our preceding results, we can regard zt, bt as the time t states, where zt are the
exogenous components and bt is the endogenous component of the state vector. The system can be
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represented as

zt+1 = A22zt + C2wt+1,

bt+1 = bt + Uy

[
(I− βA22)−1(A22 − I)

]
zt,

yt = Uyzt,

ct = (1− β)
[
Uy(I− βA22)−1zt − bt

]
.

Another way to understand the solution is to show that after the optimal decision rule has been
obtained, there is a point of view that allows us to regard the state as being ct together with zt and
to regard bt as the outcome. Following Hall (1978), this is a sharp way to summarise the implication
of the LQ permanent income theory. We now proceed to transform the state vector in this way.

To represent the solution for bt, substitute (69) into (61) to get

(1− β)

 ∞∑
j=0

βjEtyt+j − bt

+ bt = R−1bt+1 + yt

R−1bt+1 = (1− β)

 ∞∑
j=0

βjEtyt+j − bt

+ bt − yt

bt+1 = R(1− β)

∞∑
j=0

βjEtyt+j + (R−R(1− β))bt −Ryt

bt+1 = bt + (β−1 − 1)

∞∑
j=0

βjEtyt+j − β−1yt. (71)

Next, shift (69) forward one period and eliminate bt+1 by using (61) to obtain:

ct+1 = (1− β)

∞∑
j=0

βjEt+1yt+1+j − (1− β)
[
β−1(ct + bt − yt)

]
,

and if we add and subtract β−1(1− β)
∑∞
j=0 β

jEtyt+j from the RHS and rearrange, we get

ct+1 − ct = (1− β)

∞∑
j=0

βj (Et+1yt+j+1 − Etyt+j+1) . (72)

The RHS is the time t + 1 innovation to the expected present value of the endowment process, y. It
is useful to express this invariation in terms of a moving average (MA) representation for income, yt.
Suppose that the endowment process has the MA representation

yt+1 = d(L)wt+1, (73)
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where wt+1 is an IID vector process with Etwt+1 = 0, and contemporaneous covariance matrix
Etwt+1w

>
t+1 = I, d(L) =

∑∞
j=0 djL

j , where L is the lag operator, and the household has an in-
formation set wt = [wt,wt−1, , ...] at time t. Then notice that

yt+j − Etyt+j = d0wt+j + d1wt+j−1 + · · ·+ dj−1wt+1.

It follows that
Et+1yt+j − Etyt+j = dj−1wt+1. (74)

Using (74) in (72) gives
ct+1 − ct = (1− β)d(β)wt+1. (75)

The object d(β) is the present value of the moving average coefficients in the representation for the
endowment process yt.

After all of this work, we can represent the optimal decision rule for ct, bt+1 in the form of the two
equations, (68) and (72), which for reference are:

bt =

∞∑
j=0

βjEtyt+j +
1

1− β
ct,

ct+1 − ct = (1− β)

∞∑
j=0

βj (Et+1yt+j+1 − Etyt+j+1) .

Equation (68) assets that the household’s debt due at t equals the expected present value of its
endowment minus the expected present value of its consumption stream. A high debt thus indicates a
large expected present value of ‘surpluses’ yt − ct.

Recalling the form of the endowment process (63), we can compute

Et
∞∑
j=0

βjzt+j = (I− βA22)−1zt

Et+1

∞∑
j=0

βjzt+j+1 = (I− βA22)−1zt+1

Et
∞∑
j=0

βjzt+j+1 = (I− βA22)−1A22zt.

Substituting these formulas into (68) and (72), and using (62), gives the following representation for
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the consumer’s optimum decision rule:

ct+1 = ct + (1− β)Uy(I− βA22)−1C2wt+1, (76)

bt = Uy(I− βA22)−1zt −
1

1− β
ct, (77)

yt = Uyzt, (78)

zt+1 = A22zt + C2wt+1. (79)

The above representation reveals several things about the optimal decision rule.

1. The state consists of the endogenous part, ct, and the exogenous part, zt. These contain all
of the relevant information for forecasting future c, y, b. Notice that financial assets, bt, have
disappeared as a component of the state because they are properly encoded in ct.

2. Consumption is a random walk with innovation (1 − β)d(β)wt+1 as implied also by (75). This
outcome confirms that the Euler equation (66) is built into the solution. That consumption is a
random walk of course implies that it does not possess an asymptotic stationary distribution, at
least so long as zt exhibits perpetual random fluctuations, as it will generally under (62). This
feature is inherited partly from the assumption that βR = 1. The failure of consumption to
converge is something to consider when we drop quadratic utility and assume consumption must
be nonnegative.

3. The impulse response function of ct is a box: for all j ≥ 1, the response of ct+j to an increase in
the innovation wt+1 is

(1− β)d(β) = (1− β)Uy(1− βA22)−1C2.

4. Solution (76)-(79) reveals that the joint process ct, bt possess the property that Engle and Granger
(1987) called cointegration. In particular, both ct and bt possess a unit-root (see (71) for bt),
but there is a linear combination of ct, bt that is stationary provided that zt is stationary. From
(68), the linear combination is

(1− β)bt + ct.

Accordingly, Engle and Granger would call
[
(1− β) 1

]
a cointegrating vector that, when applied

to the nonstationary vector process,

[
bt

ct

]
, yields a process that is asymptotically stationary.

Equation (68) can be arranged to take the form

(1− β)bt + ct = (1− β)Et
∞∑
j=0

βjyt+j ,
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which assets that the ‘cointegrating residual’ on the LHS equals the conditional expectation of
the geometric sum of future incomes on the RHS.

5.8.2 Debt dynamics

If we subtract Equation (77) evaluated at time t from Equation (77) evaluated at time t+ 1 we obtain

bt+1 − bt = Uy(1− βA22)−1(zt+1 − zt)−
1

1− β
(ct+1 − ct).

Substituting zt+1−zt = (A22− I)zt+C2wt+1 and equation (76) into the above equation and rearran-
ging gives

bt+1 − bt = Uy(I− βA22)−1(A22 − I)zt.

6 Maximum Likelihood

The ML method is one of the most popular ways to estimate the parameter θ that specifies a probability
function Pr(X = x|θ) of a discrete stochastic variable X (or a probability density function φ(x|θ) of a
continuous stochastic variable X) based on the observations x1, ..., xn which are independently sampled
from the distribution.

Again, we won’t go a full description here. The main goal is to cover the basics and then link up
what we did with the Kalman filter to ML estimation.

6.1 Estimation

Unlike the GMM approach, the ML method requires one to know the full distribution of the DGP.
Suppose that the observable data, {x1, ..., xT } are independently and identically drawn from a PDF
φ(·,θ) given a parameter θ. The joint distribution is given by

φ(x1, ..., xn|θ) =

n∏
i=1

φ(xi,θ).

The ML method is designed to maximise the likelihood function for the entire sample:

L(θ|x1, ..., xn) = φ(x1, ..., xn|θ).

In practice, it’s easier to work with the log of the likelihood function:

max
θ

lnL(θ|x1, ..., xn) =

n∑
i=1

l(xi,θ).
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6.1.1 Example: Search and match

Consider a simple job search problem. Suppose that job offers are independently and identically drawn
from a fixed known distribution, F . The Bellman equation is given by

V (w) = max

{
w

1− β
, c+ β

∫
V (w′)dF (w′)

}
.

There is a cutoff value, w∗(θ), such that the worker takes the job offer, w, if and only if w ≥ w∗(θ),
where θ represents the parameters c (unemployment compensation) and β. The reservation wage,
w∗(θ), is unobservable. But we can compute it numerically given any parameter value θ. We can then
compute the likelihood of observing a worker i accepting a job for the first time after ti periods:

Li(θ) = (1− F (w∗(θ))) [F (w∗(θ))]
ti−1 .

Say we observe durations ti for n workers. Then the likelihood of the sample is given by

L(θ) =

n∏
i=1

Li(θ).

6.2 Asymptotic properties

Suppose that φ is differentiable and concave in θ. The FOC for the log-likelihood function is given by

n∑
i=1

∂l(xi,θ)

∂θ
= 0.

The population analogue is given by

E
[
∂l(xi, θ)

∂θ

]
= 0.

This moment condition implies the ML estimator can be viewed as a GMM estimator with h(xt,θ) =

∂l(xi,θ)/∂θ. We can then apply the results derived in the previous sections. We list these properties
without explicitly stating relevant conditions and proofs.

Consistency is given by
θ̂

p→ θ,

and the ML estimator is asymptotically normally distributed

√
n(θ̂ − θ)

d→ N
(
0, I(θ)−1

)
,
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where
I(θ) ≡ −E

[
∂2

∂θ∂θ>
l(θ)

]
,

which is defined as the Fisher information matrix. By the information matrix equality,

I(θ) = −E
[

∂2

∂θ∂θ>
l(θ)

]
= E

[(
∂l(θ)

∂θ

)>
∂l(θ)

∂θ

]
.

The ML estimator is asymptotically efficient: it achieves the Cramer-Rao lower bound when the sample
size tends to infinity. This means that no asymptotically unbiased estimator has lower asymptotic
mean-squared error than the ML estimator.

6.3 Back to the Kalman filter

Recall our latent variable problem, (28)-(29):

Xt+1 = AXt + CWt+1,

Yt = GXt + Vt,

where X was the unobserved n-vector of states and Y was its m-vector of signals which we observed,
and V ∼ N (0,R) and W ∼ N (0, I). We derived the Kalman filter, (43)-(47)

at = Yt −GX̂t,

Kt = AΣtG
>(GΣtG

> + R)−1,

X̂t+1 = AX̂t + Ktat,

Σt = CC> + KtRK>t + (A−KtG)Σt(A−KtG)>,

and with
Σt+1 = AΣtA

> + CC> −AΣtG
>(GΣtG

> + R)−1GΣtA
>.

We briefly discussed estimation, but let’s focus on that in this section. Given data on Yt, and some
initial conditions, we can use ML to estimate Ψ = (A,G,C,R).

The innovations representation that emerges from the Kalman filter is

X̂t+1 = AX̂t + Ktat,

Yt = GX̂t + at,
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where for t ≥ 1, X̂t = E[Xt|Yt−1] and E[ata
>
t ] = GΣtG

> + R = Ωt, so we have at ∼ N (0,Ωt).
Evidently, for t ≥ 1, E[Yt|Yt−1] = GX̂t, and the so

Yt|Yt−1 ∼ N (GX̂t,Ωt).

The objects GX̂t,Ωt emerging from the Kalman filter are thus sufficient statistics and also the innov-
ation at = Yt −GX̂t can be calculated recursively from (43)-(46).

We can factor the likelihood function for a sample (YT ,YT−1, ...,Y0) as

φ(YT , ...,Y0) = φ(YT |YT−1)φ(YT−1|YT−2) · · ·φ(Y1|Y0)φ(Y0). (80)

The log of the conditional density of the m× 1 vector Yt is

log φ(Yt|Yt−1) = −m
2

log(2π)− 1

2
log |Ωt| −

1

2
a>t Ωtat. (81)

We can use (81) and (43)-(46) to evaluate the likelihood function (80) recursively for a given set of
parameter values Ψ that underlie the matrices A,G,C,R. Such calculations are at the heart of efficient
strategies for computing MLEs of free parameters. For example, suppose we observe a sequence of
data, YT , generated by the state space system (28) and (29). Its log-likelihood density is

log φ(YT |Ψ) =

T∑
t=1

ln(Yt|Yt−1)

= −mT
2

log(2π)−
T∑
t=1

1

2
log |Ωt| −

1

2

T∑
t=1

a>t Ωtat.

The likelihood function is also an essential object for Bayesian statistics.18 It completely summarises
how the data influence the Bayesian posterior via the following application of Bayes’ Law. Where θ is
our parameter vector, YT

0 our data record, and p̃(θ) a probability density that summarises our prior
‘views’ or ‘information’ about θ before seeing YT

0 , our views about θ after seeing YT
0 are described by

a posterior probability, p̃(θ|YT
0 ) that is constructed from Bayes’ Law via

p̃(θ|YT
0 ) =

φ(YT
0 |θ)p̃(θ)∫

φ(YT
0 |θ)p̃(θ)dθ

,

where the denominator is the marginal joint density, φ(YT
0 ), of YT

0 .
18See for example DeJong and Dave (2012) and Fernández-Villaverde et al. (2016).
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6.4 Back to DSGE models

6.4.1 Example: Baseline RBC model

Consider the linearised RBC model:

yt =

(
1− αδ

β−1 + δ − 1

)
ct +

(
αδ

β−1 + δ − 1

)
it,

yt = at + αkt−1 + (1− α)nt,

kt = δit + (1− δ)kt−1,

nt = yt − ηct,

ct = Etct+1 −
1

η
Etrt+1,

rt = (1− β(1− δ))(yt − kt−1),

at = ρat−1 + εt.

This model features seven equations in six endogenous variables, yt, ct, it, kt, nt, rt, and one exogenous
variable, at. The challenge here – and in most DSGE models – is that we can only observe yt, ct, it,
and nt (or at least the HP-filtered version of them that we are likely to use to estimate the model).
But we don’t observe at and since we don’t really know depreciation rates, this means we don’t observe
kt or nt. So this model mixes four observable variables with three unobservable variables.

Models like the RBC model provide a micro-foundation for why we cannot find a perfect fitting
model with the observed data: There is an unobservable technology series and all of the observed series
depend on this. However, it is still not possible to estimate this joint model by ML techniques. This is
because the same unobserved series shows up in all of the reduced-form solution equations. So while
the model features stochastic shocks, it has a feature that is known as a stochastic singularity: The
shocks in all of the equations are just multiples of each other.

The model thus predicts that certain ratios of the observed variables (e.g. current and lagged
consumption, current and lagged investment) will be constant. In practice, these prediction will not
hold in the data, so there is no chance that this model can fit the data.

In general, for a model to have well–defined econometric estimates, it is necessary that for every
observable variable there be at least one unobservable shock. This can either take the form of
a “measurement error” or else involve a shock in each equation with a clear structural interpretation.

Log-linearised DSGE models with a mix of observable and unobservable variables are an example
of state-space models – something that we should be familiar with having covered the Kalman filter.
Recall that these models can be described using two equations. The first, known as the state or
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transition equation, describes how a set of unobservable state variables, Xt, evolve over time:

Xt+1 = AXt + CWt+1.

The second equation in a state-space model, which is known as the measurement equation, relates a
set of observable signals, Yt, to the unobservable state variables

Yt = GXt + Vt.

The solution to the baseline RBC model without labour input can be summarised as

kt = akkkt−1 + akzzt,

ct = ackkt−1 + aczzt,

zt = ρzt−1 + εt.

This output is something that Dynare will give you for a set of parameters (just be careful with the
timings). Now, let’s assume that consumption and capital are only observed with error so that the
two observable variables are

k∗t = akkkt−1 + akzzt + vkt ,

c∗t = ackkt−1 + aczzt + vct .

The transition equation is: [
kt

zt+1

]
︸ ︷︷ ︸

Xt+1

=

[
akk akz

0 ρ

]
︸ ︷︷ ︸

A

[
kt−1

zt

]
︸ ︷︷ ︸

Xt

+

[
0

εt+1

]
︸ ︷︷ ︸
Wt+1

,

where we simply assume C = I. The measurement equation is[
k∗t−1

ct

]
︸ ︷︷ ︸

Yt

=

[
1 0

ack acz

]
︸ ︷︷ ︸

G

[
kt−1

zt

]
︸ ︷︷ ︸

Xt

+

[
vkt−1

vct

]
︸ ︷︷ ︸

Vt

,

and notice that we had to do some trickery to get the model in state-space form – this is macroeconomics
after all, and there’s always a trick. Nevertheless, all standard DSGE models can be re-arranged to be
put in this format.

55



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

What if we didn’t observe capital but instead observed output, y∗t ? Then we would have:[
kt

zt+1

]
︸ ︷︷ ︸

Xt+1

=

[
akk akz

0 ρ

]
︸ ︷︷ ︸

A

[
kt−1

zt

]
︸ ︷︷ ︸

Xt

+

[
0

εt+1

]
︸ ︷︷ ︸
Wt+1

,

[
c∗t

y∗t

]
︸ ︷︷ ︸

Yt

=

[
ack acz

αz̄k̄α−1 k̄α

]
︸ ︷︷ ︸

G

[
kt−1

zt

]
︸ ︷︷ ︸

Xt

+

[
vct

0

]
︸ ︷︷ ︸

Vt

.

We can then put this into Dynare – or any other software program – and use ML and the Kalman
filter to attain our model estimates.

But, there’s a catch – as always. If you think that this is a complicated process where things might
go wrong, then you’d be right. Read the paper “The Econometrics of DGSE Models” by Fernández-
Villaverde (2010). He discusses some of the problems associated with MLE for DSGE models and
explains why a Bayesian approach of calculating the full posterior distribution may be preferable:

“[...]maximising a complicated, highly dimensional function like the likelihood of a
DSGE model is actually much harder than it is to integrate it, which is what we do in
a Bayesian exercise. First, the likelihood of DSGE models is, as I have just mentioned, a
highly dimensional object, with a dozen or so parameters in the simplest cases to close to
a hundred in some of the richest models in the literature. Any search in a high dimen-
sional function is fraught with peril. More pointedly, likelihoods of DSGE models are full
of local maxima and minima and of nearly flat surfaces. This is due both to the sparsity
of the data (quarterly data do not give us the luxury of many observations that micro
panels provide) and to the flexibility of DSGE models in generating similar behaviour with
relatively different combination of parameter values [...] Moreover, the standard errors of
the estimates are notoriously difficult to compute and their asymptotic distribution a poor
approximation to the small sample one.”

56



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

References

Anderson, E. W., McGrattan, E. R., Hansen, L. P., and Sargent, T. J. (1996), “Mechanics of Forming
and Estimating Dynamic Linear Economies”, Handbook of Computational Economics, 1: 171–252.

Cochrane, J. H. (2005), Asset Pricing (Revised Edition) (Princeton University Press).

Davidson, R. and MacKinnon, J. G. (2004), Econometric Theory and Methods (Oxford University
Press).

DeJong, D. N. and Dave, C. (2012), Structural Macroeconometrics (2nd Edition, Princeton University
Press).

Engle, R. F. and Granger, C. W. J. (1987), “Co-Integration and Error Correction: Representation,
Estimation, and Testing”, Econometrica, 55/2: 251–76.

Fernández-Villaverde, J. (2010), “The Econometrics of DSGE Models”, SERIEs: 3–49.

Fernández-Villaverde, J., Rubio-Ramírez, J. F., and Schorfheide, F. (2016), “Solution and Estimation
Methods for DSGE Models”, Handbook of Macroeconomics, 2: 527–724.

Hall, R. E. (1978), “Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory
and Evidence”, Journal of Political Economy, 86/6: 971–87.

Hansen, G. D. (1985), “Indivisible Labor and the Business Cycle”, Journal of Monetary Economics,
16: 309–27.

Hansen, G. D. and Wright, R. (1992), “The Labor Market in Real Business Cycle Theory”, Quarterly
Review, 16: 2–12.

Hansen, L. P. (1982), “Large Sample Properties of Generalised Method of Moments Estimators”, Eco-
nometrica, 50/4: 1029–54.

Hayashi, F. (2000), Econometrics (Princeton University Press).

Kydland, F. E. and Prescott, E. C. (1982), “Time to Build and Aggregate Fluctuations”, Econometrica,
50/6: 1345–70.

Ljungqvist, L. and Sargent, T. J. (2018), Recursive Macroeconomic Theory (4th Edition, MIT Press).

McFadden, D. (1987), “Regression-Based Specification Tests for the Mulitnomial Logit Model”, Journal
of Econometrics, 34/1-2: 63–82.

McFadden, D. (1989), “A Method of Simulated Moments for Estimation of Discrete Response Models
Without Numerical Integration”, Econometrica, 57/5: 995–1026.

Miao, J. (2020), Economic Dynamics in Discrete Time (2nd Edition, MIT Press).

Newey, W. K. and West, K. D. (1987), “A Simple, Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix”, Econometrica, 55/3: 703–8.

57



Advanced Macroeconomics I (MPhil Economics, MT2020) David Murakami

Pfeifer, J. (2013), “A Guide to Specifying Observation Equations for the Estimation of DSGE Models”,
(draft version September 17, 2020).

Prescott, E. C. (1986), “Theory Ahead of Business-Cycle Measurement”, Carnegie-Rochester Confer-
ence Series on Public Policy, 25: 11–44.

Romer, D. H. (2012), Advanced Macroeconomics (4th Edition, McGraw-Hill Irwin).

58


	Introduction
	Calibration
	Generalised Method of Moments
	Review of method of moments estimation
	Example: Estimating the simple linear regression model 

	General moment conditions
	MLE as GMM
	MM two-stage estimation with measurement error

	From MM to GMM
	The GMM methodology 
	Example: Consumption CAPM
	Example: The 2 distribution

	Asymptotic properties of GMM
	Example: OLS as a GMM estimator
	Correcting standard errors for serial correlation
	Example: Estimating an MA(1) process by GMM
	Example: Consumption CAPM


	Simulated Method of Moments
	Asymptotic properties of the SMM
	Example: McFadden's multinomial logit model


	The Kalman Filter
	Conditional expectations
	Stochastic linear difference equations
	Example: Scalar second-order autoregression
	Example: First-order scalar mixed moving average and autoregression
	Example: Vector autoregression

	First and second moments
	Population regression
	Multiple regressors 

	Deriving the Kalman filter
	The Kalman smoother

	Vector autoregressions and the Kalman filter
	Conditioning on the semi-infinite past of Y
	A time-invariant VAR

	Applications of the Kalman filter
	Muth's reverse engineering exercise
	Example: Jovanovic's matching model

	Example: The LQ permanent income model
	Another representation
	Debt dynamics


	Maximum Likelihood
	Estimation
	Example: Search and match

	Asymptotic properties
	Back to the Kalman filter
	Back to DSGE models
	Example: Baseline RBC model



