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1 Introduction

To quote Miao (2020): There are several different formal and informal econometric procedures to eval-
uate dynamic stochastic general equilibrium (DSGE) models quantitatively: Kydland and Prescott
(1982) advocate a calibration procedure which was dominant in the early literature on Real Business
Cycle (RBC) theory and analysis; Christiano and Eichenbaum (1992) use the generalised method
of moments (GMM), pioneered by Hansen (1982), to estimate equilibrium relationships; Rotemberg
and Woodford (1997) and Christiano, Eichenbaum, and Evans (2005) use the minimum distance es-
timation method based on the discrepancy between vector autoregression (VAR) and DSGE model
impulse response functions (IRFs); Kim (2000) implemented full-information likelihood-based estima-
tion methods; and Ireland (2004) described a hybrid method that combines DSGE models and VAR
methods.

In these notes, we introduce the Bayesian estimation of DSGE models, with a brief introduction of
Bayesian-VAR (BVAR) methods. This method has several advantages over other methods, as discussed
in detail by Fernández-Villaverde (2010). First, unlike the GMM estimation based on equilibrium
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relationships (such as the consumption Euler equation), Bayesian analysis is system based and fits
the solved DSGE model to a vector of aggregate time series. Second, the estimation is based on the
likelihood function generated by the DSGE model rather than, for instance, the discrepancy between
DSGE model responses and VAR IRFs. Third, maximising the likelihood function with the ML method
is challenging. By contrast, computing posteriors with Bayesian methods is much easier. Fourth, prior
distributions can be used to incorporate additional information into the parameter estimation.

Our focus here will be on linearised DSGE models. Good readings for Bayesian estimation of
both linearised and nonlinear models are An and Schorfheide (2007), DeJong and Dave (2012), and
Fernández-Villaverde (2010).

2 Principles of Bayesian Estimation

2.1 Bayesian vs frequentist approach

But first, a recap: we’re interested in estimating the parameter θ, which can be thought of as either
a scalar or a vector. The frequentist approach – which is what most, if not all, graduate students of
economics are familiar with, seeks to estimate θ from data, say, y, from the population sampled. y
contains all the information we know about θ, and it is used to form the likelihood function. This data
information is used to obtain an estimate of θ, θ̂, and it’s typically done so with the method of ML.
The estimate, θ̂, is referred to as the ML estimator (MLE), as it maximises the value of the likelihood
function.

The Bayesian approach is to form the prior belief that θ is unknown. That is, we have fundamental
uncertainty about it, and that there is no single true value for θ. So, Bayesians treat θ as a random
variable, and assign it its own a priori probability distribution. This prior distribution is then com-
bined with the distribution from the data (and hence, the likelihood function) to form what Bayesian
statisticians call the “posterior distribution.” This posterior distribution is of primary interest to the
Bayesian statistician, although macroeconomists are more so interested in the means of these posterior
distributions when it comes to estimating model parameters of a DSGE model – e.g., see Smets and
Wouters (2003, 2007) and Christiano, Trabandt, et al. (2011).

Thus, the Bayesian approach can be summarised as:

1. Sample data from the population.

2. Compute the likelihood function.

3. Observe data results from realisations of θ from its probability distribution.

4. Form a prior belief of what the distribution of θ may look like – i.e., specify a prior distribution
(mean, variance, and the distribution’s “hyperparameters”).
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5. Estimate the posterior distribution using Bayes’ Theorem, by combining the likelihood and the
prior distribution.

Table 1: Bayesian vs Frequentist Approach
Frequentist Bayesian

Parameter θ Unique true value Random variable
Object of interest θ posterior distribution of θ

Information Sample data Sample data and prior distribution
Estimation ML Bayes’ Rule + ML

Estimate of θ θ̂ Posterior distribution of θ

2.2 Bayes’ Theorem

Here, we derive Bayes’ Theorem or Bayes’ Rule, an idea which we will use time and time again.
Recall that for two events, A and B, the probability of A occurring, conditional on B, is

P (A|B) =
P (A ∩B)

P (B)
,

where A ∩B represents the intersection of events A and B.
Consider the following example of a dice roll. The set of possible outcomes is denoted by Ω =

{1, 2, 3, 4, 5, 6}. Let A be “a number > 3”, so P (A) = ({4, 5, 6}) = 1
2 . Let B be “an even number”,

so P (B) = ({2, 4, 6}) = 1
2 . Thus, P (A ∩ B) = P ({4, 6}) = 1

3 . The conditional probability is then
P (B|A) = P (A∩B)

P (A) = 2
3 .

So, doing a little algebra we have

P (A|B) =
P (A ∩B)

P (B)

=
P (A ∩B)

P (B)

P (A)

P (A)

=
P (A ∩B)

P (A)

P (A)

P (B)

=
P (B|A)P (A)

P (B)
, (1)

which is Bayes’ Theorem for events. Bayes’ Theorem handles conditional probabilities by connecting
P (A|B) and P (B|A): Initially there is an unconditional probability, P (A). But then event B occurs,
and gives additional information, P (B|A), allowing us to update the belief that A will occur. Bayes’
rule essentially updates the belief P (A|B).

Consider the dice rolling example again. We are interested in determining P (A|B), the probability
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of a number larger than 3 is rolled, given that we roll an even number:

P (A|B) =
P (B|A)P (A)

P (B)
=

2
3

1
2

1
2

=
2

3
.

Recall that the unconditional probability of a number larger than 3 is P (A) = 1
2 . So here our initial

belief has been updated with information from B (the rolled number being even).
Now, consider probability densities. Suppose the probability density function (PDF) ofX is denoted

by f(x), and the PDF of Z is f(z), with joint PDF, f(x, z). The conditional density of X is then

f(x|z) =
f(x, z)

f(z)
.

Now, replace x, z with the random variables θ, y (our parameter and data) by setting x = θ and z = y.
We then get Bayes’ Rules for densities:

f(θ|y) =
f(θ, y)

f(y)

=
f(y|θ)f(θ)

f(y)
, (2)

and note that f(θ|y) is the posterior distribution, f(y|θ) is the likelihood function, f(θ) is the prior
distribution, and f−1(y) is the marginal likelihood. We have some more to say about this, but first
let’s move onto the vector case.

2.2.1 The vector case

Now, consider the vector case (which will be the default going forward). Suppose we want to es-
timate the parameter vector θ ∈ Θ. Let the prior density be f(θ), and suppose we have data
y = {y1, y2, ..., yT }. The likelihood density is the density of data y given by θ:

f(y|θ) = f(y1|θ)

T∏
t=2

f(yt|y−1,θ).

The likelihood function of the parameter is given by

L(y;θ) ≡ f(y|θ).

The ML method of estimation is to search for a parameter vector that will maximise L(y;θ).
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Using Bayes’ Theorem, we can compute the posterior as

f(θ|y) =
f(y,θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

. (3)

But the marginal likelihood (and indeed the likelihood function itself) may be complex or impossible
to analytically solve. We proceed as follows.

Define the posterior kernel as K(θ|y), where

f(θ|y) ∝ f(y|θ)f(θ) ≡ K(θ|y). (4)

We can do this because f(y) (or, equivalently, f−1(θ)) can be treated as a proportional constant –
i.e., it does not contain θ, and so it does not change as θ changes. Thus, the Bayesian approach is
to choose a parameter vector θ so as to maximise the posterior density, f(θ|y), or, equivalently, the
posterior kernel, K(θ|y).

As mentioned, the difficulty of using the ML method or the Bayesian method is that the likelihood
function typically has no analytical solution. Also, Bayesian analysis involves the computation of the
conditional distribution of a function of the parameters, h(θ):

E [h(θ)|y] =

∫
h(θ)f(θ|y)dθ.

Numerical integration is therefore needed. To implement the Bayesian method, we use a filtering
procedure to evaluate the likelihood function. We then simulate the posterior kernel using a Markov
chain Monte Carlo (MCMC) method such as the Metropolis-Hastings algorithm or Gipps sampler
(which we shall discuss later).
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Figure 1: The Posterior Distribution

Figure 2: The Posterior Distribution – Credibility/Uncertainty Bands

2.2.2 Example: Binomial distribution

Let’s look at a simple example. Suppose we flip a coin n times, and observe m successes (“heads”) over
the n flips. Every flip can result in either “heads” or “tails”, and we are interested in the probability of
success, θ = p. As we know, the binomial distribution is given by

f(yi|p) =

(
n

m

)
pyi(1− p)1−yi .

7
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Assuming that we have independent coin flips (and a fair coin), the density for the n flips together is
just the product of the individual densities of each of the n flips:

f(y1, ..., yn|p) =

n∏
i=1

f(yi|p)

⇔ f(y|p) = L(y|p) =

n∏
i=1

pyi(1− p)1−yi , (5)

which represents the likelihood function of the data. The log-likelihood is simply the log of the
likelihood function:

logL(y|p) = l(y|p) =

n∑
i=1

yi ln p+

(
n−

n∑
i=1

yi

)
ln(1− p),

and if we differentiate the log-likelihood function we attain a first-order condition (FOC):

∂l(y|p)
∂p

=
1

p

n∑
i=1

yi +
1

1− p

(
n−

n∑
i=1

yi

)
= 0

=⇒ 0 = (1− p̂)
n∑
i=1

yi + p

(
n−

n∑
i=1

yi

)

p̂ =

∑n
i=1 yi
n

=
m

n
.

Now, suppose had n = 100, and we observed m = 63 “heads”. Then p̂ = 0.63 (which also coincides
with the sample mean, ȳ).

Figure 3: Outcome of an Experiment

So how can we improve this using Bayesian methods? Well, for starters, if we believe that the coin
is unbiased, then we may have a prior belief that p should be clustered around 0.5. Furthermore, as
it’s a probability, the support of this prior distribution should be [0, 1]. A candidate prior distribution
is the Beta distribution which has support [0, 1] and is flexible in terms of its shape.
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Definition 1 (Beta Distribution). The density function of the Beta distribution is

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− xβ−1),

where Γ(·) is the Gamma function, and α and β are hyperparameters which determine the shape of
the density. The Beta distribution has the following mean,

E [X] =
α

α+ β
,

and variance,

Var (X) =
αβ

(α+ β)2(α+ β + 1)
,

and moment generating function (MGF),

MX(t) = 1 +

∞∑
k=1

(
k−1∏
r=0

α+ r

α+ β + r

)
tk

k!
.

As the hyperparameters α and β vary, the Beta distribution takes on many shapes, as shown in
Figure 4. The PDF can be strictly increasing (α > 1, β = 1), strictly decreasing (α = 1, β > 1),
U-shaped (α < 1, β < 1), or unimodal (α > 1, β > 1). The case α = β yields a symmetric PDF about
0.5 with mean 0.5 and variance (4(2α + 1))−1, and when α = β = 1, the Beta distribution reduces
down to uniform distribution, U(0, 1).

One thing to note: there is no hard and fast rule (that I know of) to select hyperparameters. Their
selection is made to simply reflect personal beliefs about the distribution. For our coin flip example,
a reasonable prior for a coin is that it should not be more or less fair, and that if it is biased, the
bias should not be too large. So, the prior should be centred around 0.5, with a small variance, which
implies that we set α = β with high values (to get a “tight” prior). Here, α = β = 40 seems to be
acceptable.
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Figure 4: Density of the Beta Distribution

For our coin flip experiment, the density of Beta distribution can be written as

f(p|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

=⇒ f(p|α, β) ∝ pα−1(1− p)β−1, (6)

where we drop the quotient of Gamma functions as it does not contain any information pertaining to
the parameter of interest, p. Now, apply Bayes’ Rule:

f(p|y) =
f(y|p)f(p)∫
f(y|p)f(p)dp

,

and then focus on the posterior kernel,

f(p|y) ∝ f(y|p)f(p) ≡ K(p|y)

∝ pm(1− p)n−m × pα−1(1− p)β−1

∝ pm+α−1(1− p)n−m+β−1. (7)

Wrap up by defining ᾱ = m+α and β̄ = n−m+β, and writing the posterior distribution (proportionally
as the kernel) as

f(p|y) ∝ pᾱ−1(1− p)β̄−1. (8)

Below is some sample R code which works through this example:
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rm(list=ls(all=TRUE));

graphics.off();

p.seq = seq(0,1,by=0.001);

# Plot likelihood

plot(p.seq,100*dbinom(x=63,prob=p.seq,size=100),type="l",col="blue",

xlab="p",ylab="Density",ylim=c(0,13)) #scale factor of 100 for plotting purposes

# Find MLE

Lik = function(p) prod((dbinom(63,100,p,log=FALSE)));

optimise(Lik,lower=0,upper=1,maximum=TRUE)

## $maximum

## [1] 0.6299815

##

## $objective

## [1] 0.08240399

# Update prior

prior = dbeta(x=p.seq,40,40);

lines(p.seq,prior,col="red");

# Plot posterior

posterior = 100*dbinom(x=63,prob=p.seq,size=100)*prior;

lines(p.seq,posterior,col="darkgreen");

# Add mean lines

abline(v=optimise(Lik,lower=0,upper=1,maximum=TRUE)$maximum,col="blue",lty=2);

abline(v=1/2,col="red",lty=2) #alpha/(alpha+beta)

abline(v=103/(103+77),col="darkgreen",lty=2) #bar.alpha/(bar.alpha+bar.beta)

# Add legend

legend(0.7,12,legend=c("Likelihood","Prior","Posterior"),

col=c("blue","red","darkgreen"),lty=1);
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Figure 5: Likelihood, Prior, Posterior Distribution for Binomial Example
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2.2.3 Example: Normal prior and a simple white noise process

Here’s another simple example to see that Bayesian estimation essentially lies between calibration and
maximum likelihood estimation. Suppose that a DGP is given by

yt = µ+ εt,

where εt ∼ N (0, 1) is a Gaussian white noise process. We want to estimate the parameter µ from
sample data y. We can compute the likelihood density as:

p(y|µ) = (2π)−T/2 exp

(
−1

2

T∑
t=1

(yt − µ)2

)
.

We then obtain the ML estimate

µ̂ =
1

T

T∑
t=1

yt,

which is nothing but the sample average.
Suppose that the prior is Gaussian with mean µ0 and variance σ2

µ. Then the posterior kernel is

12
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given by (
2πσ2

µ

)−1/2
exp

(
− 1

2σ2
µ

(µ− µ0)2

)
(2π)−T/2 exp

(
−1

2

T∑
t=1

(yt − µ)2

)
.

Thus, the Bayesian estimate is given by

µ̂BE =
T µ̂+ σ−2

µ µ

T + σ−2
µ

,

which is a linear combination of the prior mean and the MLE. When we have no prior information
(i.e., σ2

µ →∞), the Bayesian estimate converges to the ML estimate. When we are sure that the prior
calibrated value is true (i.e., σ2

µ → 0), then µ̂BE → µ0.

13
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3 Bayesian Estimation of Linear Regressions

We’ve covered the simple base premise of Bayesian estimation: Use Bayes’ Theorem to get a posterior
distribution of an object of interest by finding the product of its likelihood function and its prior
distribution. In this section, we extend our analysis to some simple linear regression models and show
that we follow the aforementioned steps.

3.1 The simple linear regression model

Let’s consider a classic, simple linear regression model:

y = Xβ + u, u ∼ N (0, σ2I),

where I use the notation from Davidson and MacKinnon (2004), so y is a n× 1 vector, X is an n× k
matrix of regressors, β is a k × 1 vector of coefficients, and u is the vector of NID errors, so each i-th
row looks like yi = Xiβ + ui.

Here, our parameters of interest are, of course, θ = (β, σ2). Using OLS, our estimates for these are
the familiar expressions:

β̂ = (X>X)−1X>y,

σ̂2 =
û>û

n− k
.

To form our Bayesian estimate, let’s first make a huge assumption (later on, we will relax this): σ2

is a known constant. Then we next define the density of a multivariate normal distribution, N (µ,Σ),
with mean vector µ and variance-covariance matrix Σ, as

f(y|µ,Σ) = (2π)−n/2|Σ|−1/2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}
,

and we know that since u ∼ N (0, σ2I), it follows that y ∼ N (Xβ, σ2I). Hence, we can write

f(y|θ) = (2π)−n/2|σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
f(y|β) = (2π)−n/2|σ2I|−1/2︸ ︷︷ ︸

constant

exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
︸ ︷︷ ︸

kernel

=⇒ f(y|β) ∝ exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
. (9)

Why do we do this? Well, σ2 is a known scalar constant, so it’s easier to just deal with the kernel
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of the normal distribution. It’s worth mentioning that so far we aren’t doing anything new; we’re
just writing out an expression for the likelihood function of a normally distributed quantity. With the
likelihood function in hand, we then need a prior distribution to compute the posterior distribution.

When considering what prior distribution to pick for β, we need to look for a multivariate distri-
bution as β is a vector. A natural choice is the multivariate normal distribution – and it’s not too
outlandish given our knowledge of both finite sample and asymptotic theory of the OLS estimator.
So, let’s assume that β ∼ N (β0,Ω0), where β0 and Ω0 are the prior mean vector and prior variance
covariance matrix, respectively. Then the prior density of β can be written as

f(β) = (2π)−n/2|Ω0|−1/2 exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
=⇒ f(β) ∝ exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
. (10)

So now we can use Bayes’ Theorem and substitute in our expressions, (9) and (10), to write

f(β|y) ∝ f(y|β)f(β)

∝ exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
∝ exp

{
−1

2

[
(y −Xβ)>(σ2I)−1(y −Xβ) + (β − β0)>Ω−1

0 (β − β0)
]}

. (11)

This is looking an absolute mess, but bare with it for a bit. Let’s manipulate the term inside the
exponent of the posterior,

(y −Xβ)>(σ2I)−1(y −Xβ) + (β − β0)>Ω−1
0 (β − β0),

and expand it out by “completing the squares”:1

y>(σ2I)−1y − y>(σ2I)−1Xβ − (Xβ)>(σ2I)−1y + (Xβ)>(σ2I)−1Xβ

+ β>Ω−1
0 β − β>Ω−1

0 β0 − β
>
0 Ω−1

0 β + β>0 Ω−1
0 β0

= y>(σ2I)−1y − 2β>X>(σ2I)−1y + (Xβ)>(σ2I)−1Xβ + β>Ω−1
0 β − 2β>Ω−1

0 β0 + β>0 Ω−1
0 β0

= y>(σ2I)−1y − 2β>
(
X>(σ2I)−1y + Ω−1

0 β0

)
+ β>

(
X>(σ2I)−1X + Ω−1

0

)
β + β>0 Ω−1

0 β0.

1Recall that in the scalar case, this is

ax2 + bx+ c = a(x− h)2 + k,

where h = − b
2a

and k = c− ah2. In the matrix case, we have:

x>Ax + x>B + C = (x−H)>A(x−H) + K,

where H = − 1
2
A−1B and K = C− 1

4
B>A−1B, and A is symmetric.
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Next, let’s define

β̄ = Ω̄
(
Ω−1

0 β0 + X>(σ2I)−1y
)
, (12)

Ω̄ =
(
Ω−1

0 + X>(σ2I)−1X
)−1

, (13)

and let’s do a little “add and subtract”:

y>(σ2I)−1y − 2β>Ω̄
−1

Ω̄︸ ︷︷ ︸
I

(
X>(σ2I)−1y + Ω−1

0 β0

)
+ β>

(
X>(σ2I)−1X + Ω−1

0

)
β + β>0 Ω−1

0 β0+β̄
>

Ω̄
−1
β̄ − β̄>Ω̄

−1
β̄︸ ︷︷ ︸

=0

,

and so we can clean up our disgusting expression a bit:

y>(σ2I)−1y − 2β>Ω̄
−1
β̄ + β>Ω̄

−1
β + β>0 Ω−1

0 β0 + β̄
>

Ω̄
−1
β̄ − β̄>Ω̄

−1
β̄

=
[
β>Ω̄

−1
β + β̄

>
Ω̄
−1
β̄ − 2β>Ω̄

−1
β̄
]

+ y>(σ2I)−1y + β>0 Ω−1
0 β0 − β̄

>
Ω̄
−1
β̄

= (β − β̄)>Ω̄
−1

(β − β̄) + y>(σ2I)−1y + β>0 Ω−1
0 β0 − β̄

>
Ω̄
−1
β̄.

So now we can express (11) as

f(β|y) ∝ exp

{
−1

2

[
(β − β̄)>Ω̄

−1
(β − β̄) + y>(σ2I)−1y + β>0 Ω−1

0 β0 − β̄
>

Ω̄
−1
β̄
]}

∝ exp

{
−1

2

[
(β − β̄)>Ω̄

−1
(β − β̄)

]}
exp

{
−1

2

[
y>(σ2I)−1y + β>0 Ω−1

0 β0 − β̄
>

Ω̄
−1
β̄
]}

∝ exp

{
−1

2

[
(β − β̄)>Ω̄

−1
(β − β̄)

]}
, (14)

and we’re done! We once again ignore constants as we’re only interested in the distribution of β. Thus,
we have managed to calculate our posterior distribution, along with getting an expression for its mean
and variance. It looked extremely messy, but we essentially followed the procedure outlined in the
previous section. We first attained a likelihood function for the sample data, f(y|β) (remember that
we first had f(y|θ) but we ignored constant elements and focused on the kernel), then we determined
a prior distribution for our object of interest, f(β), and then we merged the two elements together to
form our posterior distribution, f(β|y).

There are a couple things worth mentioning at this stage: notice that in this simple example,
the expression in the exponent of (14) is a quadratic in β. Therefore, β|y is normally distributed
(Gaussian). In fact, we can express the distribution of this as stuff that we know: β|y ∼ N (β̄, Ω̄).
When the posterior and prior share the same class of distribution, the prior is referred to as a conjugate
prior.
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Definition 2 (Conjugate Distributions). In Bayesian probability theory, if the posterior distribu-
tion, f(θ|y), are in the same probability distribution family as the prior probability distribution, f(θ),
the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior
for the likelihood function, f(y|θ).

3.1.1 Example: Estimating the Taylor Rule

Consider Taylor’s (1993) original interest rate rule:

rt = π̄t +
1

2
(π̄t − 2) +

1

2
(yt − y∗t ) + 2,

where rt is the Federal Funds Rate (FFR), π̄t is annual inflation, and y∗t is trend (log) GDP. After
doing a bit of rearranging and defining xt as the (real) output gap, we can rewrite the Taylor Rule as

rt = 1 + 1.5π̄t +
1

2
xt, (15)

which is now a linear function which we can estimate using regression. Using data from FRED between
1980Q1 to 2006Q4, and using the HP filter, we regress the FFR on inflation and the output gap to get
the following regression results:

rt = 2.00
(1.20,2.79)

+ 1.14
(0.97,1.31)

π̄t + 0.24
(−0.03,0.51)

xt + ε̂t, (16)

where, clearly, we have

β̂OLS =

β̂1

β̂2

β̂3

 =

 2

1.14

0.24

 .
Now, what if we want to use Bayesian estimation? We just attained our estimates using OLS, so

next we need to construct a distribution for our priors.
For starters, let’s suppose that we use Taylor’s original proposed rule, (15), as our prior where we

believe the following:

β0 =

β1

β2

β3

 =

 1

1.5

0.5

 .
Just as a reminder: β1 is the target of the Fed, β2 is the coefficient on inflation, and β3 is the coefficient
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on the output gap. Next, for our prior variance we have the following 3× 3 matrix, Ω0:

Ω0 =

ω
2
1 0 0

0 ω2
2 0

0 0 ω2
3

 ,
where the diagonal terms are our hyperparameters for the variance terms of β0. We obviously have
some uncertainty surrounding our prior β0: so let’s suppose that assume values between 0.5 and 1.5 for
β1; 1.2 and 1.8 for β2; and 0.3 and 0.07 for β3. These values will of course give us standard deviations
of 0.5, 0.3, and 0.2 for ω1, ω2, and ω3, respectively:

Ω0 =

ω
2
1 0 0

0 ω2
2 0

0 0 ω2
3

 =

0.25 0 0

0 0.09 0

0 0 0.04


Using these priors, our Bayesian estimation gives us

rt = 1.52
(0.92,2.13)

+ 1.23
(1.10,1.38)

π̄t + 0.35
(0.13,0.57)

xt + ε̂t, (17)

where our vector Bayesian estimates for the parameter vector β is

β̄ =

1.52

1.23

0.35

 ,
which are the median values of the posterior distributions. In Bayesian estimation, the intervals
denoted in (17) are referred to as uncertainty bands, rather than our usual notation of “confidence
intervals” – it’s a minor point, but something worth noting. Also, here, in case it wasn’t obvious, the
uncertainty bands are of 95% uncertainty of a posterior normal distribution.

Comparing the Bayesian estimate, (17), with the our ML/OLS estimate, (16), and our prior (the
original Taylor rule), (15), we note:

• The point estimate of our Bayesian estimation is the median of the posterior distribution.

• The prior has pushed the coefficients [of our ML/OLS estimates] closer to the original Taylor
coefficients.

• The Bayesian estimate is a weighted average between the ML/OLS estimate and our prior.
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Some alternative priors which we could’ve used are a non-informative (flat/loose/diffuse) prior:

β1 = β2 = β3 = 0,

=⇒ ω2
1 = ω2

2 = ω2
3 →∞,

or a non-reasonable prior:

β1 = β2 = β3 = 0,

ω2
1 = ω2

2 = ω2
3 = 0.0025.

These prior specifications would give the results as shown in Table 2. Notice how the diffuse prior
produces ML estimates, while the non-reasonable prior (“bad prior”) pushes all coefficients towards 0.

Table 2: Alternative Priors
Prior β1 β2 β3

Taylor Rule 1 1.5 0.5
ML/OLS 2.00

(1.20,2.79)
1.14

(0.97,1.31)
0.24

(−0.03,0.51)

“Good prior” 1.52
(0.92,2.13)

1.23
(1.10,1.38)

0.35
(0.13,0.57)

“Diffuse prior” 2.00
(1.20,2.79)

1.14
(0.97,1.31)

0.24
(−0.03,0.51)

“Bad prior” 0.17
(0.07,0.27)

0.77
(0.70,0.84)

0.01
(−0.09,0.10)

3.2 The regression model with unknown variance

Up until now we have made the very strong assumption that the error variance, σ2, is known. Even
in classical econometrics, this is an unrealistic assumption. If we assume that the error variance is
unknown, as is usually the case, then our vector of parameters to be estimated is θ = (β, σ2). From
(4), we can rewrite Bayes’ Rule, or the posterior kernel, as

f(β, σ2|y) ∝ f(y|β, σ2)f(β, σ2), (18)

where f(β, σ2) is a joint prior. We can make the simplifying assumption of prior independence:

f(β, σ2) = f(β)f(σ2), (19)

where we can propose a separate prior for each parameter.
The posterior density, f(β, σ2|y), is trickier to handle. It’s a joint posterior, which is not tractable

as we need to estimate and disentangle the densities of β and σ2 (in this example). Thus, we need the
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marginal posterior for each parameter that we wish to estimate. This is simple in theory:

f(β|y) =

∫ ∞
−∞

f(β, σ2|y)dσ2,

f(σ2|y) =

∫ ∞
−∞

f(β, σ2|y)dβ,

but difficult in practice. Just consider the example we had in the previous section (but this time we
include σ2 in θ), so our likelihood and kernel densities are:

f(y|θ) = (2π)−n/2|σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
=⇒ f(y|β, σ2) ∝ |σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
, (20)

and our prior distribution for β was

f(β) = (2π)−n/2|Ω0|−1/2 exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
=⇒ f(β) ∝ exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
. (21)

Now, we need a candidate prior distribution for σ2. Since σ2 is a variance term, we need a distribution
with a strictly positive support. One candidate is the Inverse-Gamma distribution.

Definition 3 (Inverse-Gamma Distribution). The density function of a random variable x which
follows the Inverse-Gamma distribution, X ∼ Γ−1(α, β), is defined over the support x > 0 as

f(x|α, β) =
βα

Γ(α)

(
1

x

)α+1

exp

{
−β
x

}
,

where Γ(·) is the Gamma function, and α and β are hyperparameters which determine the shape and
scale of the density, respectively. The Inverse-Gamma distribution has the following mean,

E [X] =
β

α− 1
,

and variance,

Var (X) =
β2

(α− 1)2(α− 2)
.

The MGF of the Inverse-Gamma distribution does not exist.
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Figure 6: Inverse-Gamma PDF

Our prior distribution for σ2 is

f(σ2) =
βα

Γ(α)
(σ2

0)−α−1 exp

{
− β

σ2
0

}
=⇒ f(σ2) ∝ (σ2

0)−α−1 exp

{
− β

σ2
0

}
. (22)

Putting (20), (21), and (22) into (18), we get

f(β, σ2|y) ∝ |σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
× exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
(σ2

0)−α−1 exp

{
− β

σ2
0

}
. (23)

The issue is that integration and obtaining an analytical solution to this problem is close to, if not,
impossible. We will have to approach this problem numerically.

3.3 Markov Chain Monte Carlo methods

Recall that a Markov chain is a stochastic model that describes a sequence of events in which the
probability of each event depends on the state of the previous event, while a Monte Carlo simulation is
a broad class of computational algorithms that rely on repeated random sampling to obtain numerical
results. Markov chain Monte Carlo (MCMC) algorithms, such as the Metropolis Hastings (MH)
algorithm and the Gibbs sampler, have become extremely popular in statistics and econometrics as a
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way of approximately sampling from complicated probability distributions in high dimensions. The
MH algorithm, in particular, has become a standard process of estimating DSGE models.

3.3.1 The Gibbs sampler

Here, we narrow our focus on the Gibbs sampler. Assume for instance that you have a posterior
distribution, f(β, σ2|y), for parameters β and σ2, but that it is impossible to attain an analytical
solution to the unconditional posterior distributions, f(β|y) and f(σ2|y). However, assume that it is
possible to evaluate the conditional posterior distributions, f(β|y, σ2) and f(σ2|y,β), and that these
conditional posteriors correspond to known distributions. In such a case, we can conduct what is
known as the Gibbs algorithm:

1. Fix starting values β(0) and σ2
(0) for two parameters, β and σ2.

2. Draw first value of β, β(1), from the conditional posterior, f(β|y, σ2
(0)).

3. Draw first value of σ2, σ2
(1) from the conditional posterior, f(σ2|y,β(1)), using β(1).

4. Start a new cycle: draw value β(2) from the conditional posterior, f(β|y, σ2
(1)), using σ

2
(1).

5. Draw value σ2
(2) from the conditional posterior, f(σ2|y,β(2)), using β(2).

6. Repeat process S times.

After a certain number of iterations, draws will not result from the conditional posterior, but from the
unconditional posterior. A large number of draws recovers the unconditional posterior numerically – a
key property for modern Bayesian methods, afforded by large developments in computational power in
the 21st century. The initial iterations for which the algorithm has not yet reached the unconditional
distribution is called the burn-in sample, which are usually discarded when constructing the final
posterior distribution.

3.3.2 The Metropolis-Hastings algorithm

The MH algorithm is similar to the Gibbs sampler, but there is one main difference: at each iteration,
the new draw obtained for the parameter will be accepted only with a certain probability. This
probability depends on the conditional density, and if the draw is not accepted, the value from the
previous iteration is retained. Also, because we cannot draw directly from the conditional posterior,
each new value is drawn from the previous value according to some transition function called the
transition kernel. The MH algorithm is roughly as follows:

1. Fix starting values β(0) and σ2
(0) for β and σ2.

2. Draw a candidate value for β(1) from its transition kernel (a function of β(0)).
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3. Compute its acceptance probability from the conditional density, f(β|y, σ2).

4. If the draw is accepted, update the value. Otherwise, keep the former value and set β(1) = β(0).

5. Draw candidate σ2
(1) from its transition kernel (a function of σ2

(0)).

6. Compute its acceptance probability from the conditional density, f(σ2|y,β(1)), using β(1).

7. If draw accepted, update the value. Otherwise, set σ2
(1) = σ2

(0).

8. Repeat process S times.

Similar to the Gibbs sampler, after a certain number of iterations, the algorithm will draw from the
unconditional distribution. The MH algorithm is more general than the Gibbs sampler, but heavier in
terms of computational requirements. For most econometric applications (such as VARs), the Gibbs
sampler is sufficient.

3.3.3 Example: The Gibbs sampler for linear regression models

We obtained the joint posterior distribution, f(β, σ2|y), as shown in Equation (23)

f(β, σ2|y) ∝ |σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
× exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
(σ2

0)−α−1 exp

{
− β

σ2
0

}
,

but how do we obtain the conditional distributions f(β|y, σ2) and f(σ2|y,β)?
Well, hypothetically, if we conditioned f(β, σ2|y) on σ2, then it would imply that σ2 is known

and can be treated as a constant. Then, the only remaining argument of the density is β. Thus, to
obtain f(β|y, σ2), we can start from f(β, σ2|y) and treat any term not involving β as part of the
proportionality constant (including σ2). This means that (23) can be written as

f(β|y, σ2) ∝ exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
,

which is exactly the same posterior as (11), where β was the only unknown. Like before, f(β|y, σ2) is
multivariate normal with mean

β̄ = Ω̄
(
Ω−1

0 β0 + X>(σ2I)−1y
)

and variance

Ω̄ =
(
Ω−1

0 + X>(σ2I)−1X
)−1

.
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Meanwhile, the conditional posterior of σ2 (ignoring terms not including σ2) is

f(σ2|y,β) ∝ |σ2I|−1/2 exp

{
−1

2
(y −Xβ)>(σ2I)−1(y −Xβ)

}
(σ2

0)−α−1 exp

{
− β

σ2
0

}
,

∝ (σ2
0)−ᾱ−1 exp

{
− β̄

σ2
0

}
,

where ᾱ = n
2 + α and β̄ = 1

2 (y −Xβ)>(y −Xβ) + β. The proportional expression for f(σ2|y,β) is
the kernel of an Inverse-Gamma distribution with shape ᾱ and scale β̄.

Most software packages will include methods for Bayesian estimation, so while the theory may look
slightly daunting, the implementation is not all that hard. The only challenge in Bayesian estimation
is finding good data (as is usually the case for most econometric work) and specifying sensible priors.

Consider our estimation of the Taylor Rule, this time with unknown σ2, parameterised with the
Inverse-Gamma distribution with hyperparameters α = 0.001 and β = 0.001:

rt = 1.52
(0.89,2.12)

+ 1.24
(1.10,1.38)

π̄t + 0.35
(0.14,0.59)

xt + ε̂t,

and where the posterior distributions for the parameters are shown in Figure 7. These results should
be fairly intuitive: the results are similar to the Bayesian estimate of the simplified model, (17), given
that our hyperparameters produce a diffuse prior for σ2. Thus, the data generates an estimate for σ2,
and the OLS estimate, σ̂2, is obtained.

Figure 7: Empirical Posterior Distributions for Taylor Rule Estimation

What if we instead used an Inverse-Gamma distribution with hyperparameters α = 1000 and β = 1
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(variance for σ2 → 0)?
rt = 1.95

(1.78,2.13)
+ 1.15

(1.11,1.18)
π̄t + 0.25

(0.19,0.31)
xt + ε̂t,

which looks very similar to the ML/OLS estimates for β, (16). This may be surprising at first, but
let’s consider why this is the case: A loose prior for σ2 causes a tight prior for β, and so the posterior
for β tends towards its prior. Conversely, a tight prior for σ2 results in a diffuse prior for β, where the
posterior for β tends towards the ML/OLS estimate. Remember, σ2 is the variance for the data. A
tight prior for σ2 means we assume a very small variance for the data. That is, we are very confident
in the information provided by the data.

In other words, we tell the model “put all the weight on the likelihood function, and produce
ML/OLS estimates for β”. Conversely, a loose prior for σ2 means we assume a very large variance in
the data, implying that we tell the model “put no weight on the data, and instead put all the weight
to the prior, so that the posterior for β will match the prior”.

To summarise what we’ve covered in this section: for most models, it is not possible to derive
an analytical form for the posterior distribution. However, if the conditional posterior is a known
distribution, one can use Gibbs sampling to numerically approximate it. If the conditional posterior can
be calculated but is not a known distribution, one has to use the MH algorithm instead. The principle
behind these MCMC algorithms is that after drawing successively from the conditional posterior, one
will eventually draw from the unconditional posterior. Finally, hyperparameters have a very strong
impact on the results. If your estimation is failing, or giving you strange results, revise your selections
for the hyperparameters.
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4 Bayesian Estimation of VAR Models

In the previous section we covered linear regression models using both standard ML and Bayesian
techniques. We saw that the choice of prior was important when calculating the posterior. Generally
speaking, when we had a rich dataset the posterior was dominated by the dominated by the data, and
when we had a noise dataset and a strong prior the posterior was dominated by the prior. We also
saw that in some cases it was possible to sample directly from a known posterior distribution. But
in cases where no closed form expression of the posterior exists, then we had to resort of simulation
(MCMC) methods.

In this section we move onto vector autoregression (VAR) and Bayesian VAR (BVAR) models. For
the sake brevity, we won’t cover autoregressive (AR) models. Those interested in a deep exposition of
AR models can read good texts such as Enders (2010).

4.1 Mathematical prerequisites: VARs

A VAR model is essentially a multivariate version of an AR model, and it can be expressed as[
xt

yt

]
=

[
a10

a20

]
+

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
xt−1

yt−1

]
+ · · ·+

[
a

(p)
11 a

(p)
12

a
(p)
21 a

(p)
22

][
xt−p

yt−p

]
+

[
ex,t

ey,t

]
,

or in compact notation as

Yt = A0 + A1Yt−1 + · · ·+ ApYt−p + et, (24)

where

et ∼ IID(0,Σ), Σ =

[
σ2
x σxy

σyx σ2
y

]
.

Equation (24) captures the co-movement of the variables in Yt, and here is known as a vector autore-
gression of order p, or simply VAR(p).

We can introduce more lagged dependent variables, moving average components (giving us a
VARMA process), and other explanatory variables too.

4.1.1 Stability and stationarity

Let us focus on the VAR(1) model first:

Yt = A0 + A1Yt−1 + et (25)

= A0 + A1 (A0 + A1Yt−1 + et−1) + et

= (I + A1)A0 + et + A1et−1 + A2
1Yt−2,
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and using backwards recursion, we can derive for the n-th step:

Yt = (I + A1 + · · ·+ An
1 )A0 +

n∑
i=0

Ai
1et−1 + An+1

1 Yt−(n+1).

Similar to the AR(1) process, if An+1
1 approaches the null matrix, then we can write our VAR(1)

process as the following infinite vector moving average (VMA) process:

Yt =

∞∑
i=0

(Ai
1)A0 +

∞∑
i=0

Ai
1et−i. (26)

Recall our stability conditions when we looked at DSGE models (and VAR models) in first-year mac-
roeconomics, and consider the singular value decomposition of the A1 matrix:2

A1 = UΛV>,

A2
1 = UΛV>UΛV> = UΛ2V>,

...

An
1 = UΛnV>,

where Λ is the diagonal matrix with singular values, i.e.,

Λ =

[
λ1 0

0 λ2

]
,

and U and V are orthogonal matrices whose columns are the eigenvectors of A1. Therefore, if
|λ1|, |λ2| < 1, then An

1 → 0 as n→ +∞, and the system is stable.
From Equation (26), we derive that

E[Yt] =

∞∑
i=0

(Ai
1)A0 = (I−A1)−1A0,

Var(Yt) = Var

( ∞∑
i=0

Ai
1et−i

)
= Σ + A1ΣA>1 + A2

1Σ(A2
1)> + · · · .

One can show that
vec (Var(Yt)) = (I−A1 ⊗A1)−1vec (Var(et)) ,

where ⊗ is the Kronecker product. We have not derived the autocovariance function, but we can
2Excuse the abuse of notation with respect to the powers and transposes. The point I want to make here is the

eigenvalue decomposition.
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observe that if the eigenvalues of Λ are within unit circle, then the variables in Yt are jointly covariance
stationary.

In general, any VAR(p) process has a VAR(1) representation in its mean adjusted form:

Yt − µ = A1(Yt−1 − µ) + · · ·+ Ap(Yt−p − µ) + et, (27)

where µ = (I−A1 − · · · −Ap)
−1A0. We can rewrite (27) as

Zt = FZt−1 + Et,

where

Zt =


Yt − µ

...
Yt−p+1 − µ

 , F =


A1 A2 · · · Ap

I 0 · · · 0

0
. . . . . .

...
0 0 I 0

 , Et =


et

0
...
0

 .
The matrix F is known as the companion matrix. The stability restrictions are given by the eigenvalues
of F. If its eigenvalues are less than unity in absolute value, then the system is stable and therefore is
covariance stationary.

4.1.2 Estimation, inference, and lag selection

The VAR(p) model in Equation (24) can be rewritten as

Y>t = A>0 + Y>t−1A
>
1 + · · ·+ Yt−pA

>
p + e>t , (28)

or, in matrix notation,

Y>t =
[
1 Y>t−1 · · · Y>t−p

]


A>0

A>1
...

A>p

+ e>t

= XtΠ + e>t ,

where Y>t is a 1× g row vector.3 So the VAR(p) model has the same representation as a simple linear
regression model:

Y
T×g

= X
T×(p+1)g

Π
(p+1)g×g

+ e
T×g

, (29)

3A lot of people get confused here due to different textbooks/lecturers using different matrix dimensions and notation.
Here the matrix Y has n observations, with g explanatory variables (not including the intercept term), and p lags. More
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and the parameters of the VAR model can be estimated by OLS:

Π̂ = (X>X)−1X>Y. (30)

As before we have

Π̂ = (X>X)−1X>(XΠ + e)

= Π + (X>X)−1X>e.

Using the vec operator, we can stack the columns of the (p+ 1)g×g matrix Π̂ into a long (p+ 1)g2×1

vector:
vec
(
Π̂
)

= vec(Π) + vec
(
(X>X)−1X>e

)
. (31)

One can show that the variance of vec
(
Π̂
)
is

Var
(
vec
(
Π̂
))

= Σ⊗ (X>X)−1

An estimator for Σ is given by

Σ̂ =
1

T

(
Y −XΠ̂

)> (
Y −XΠ̂

)
=

1

T
ê>ê.

Π̂ and Σ̂ are the MLEs of Π and Σ, respectively. These estimators are obtained from maximising
the log likelihood function,

−Tg
2

log 2π − T

2
log |Σ| − 1

2
vec(Y −XΠ)>(Σ−1 ⊗ I)vec(Y −XΠ).

We can perform a t-test for any parameter of the VAR model by selecting the appropriate diagonal
element of Σ̂⊗ (X>X)−1. Additionally, we can test several parameters simultaneously – e.g., let π̂p+1

generally, we could also include exogenous variables, Vt, to have

Y>t = A>01 + V>t A>02 + Y>t−1A>1 + · · ·+ Yt−pA>p + e>t ,

⇔ Y>t =
[
1 Vt Y>t−1 · · · Y>t−p

]


A>01
A>02
A>1
...

A>p

+ e>t ,

or, alternatively,
Y

T×g
= X

T×(p+2)g
Π

(p+2)g×g
+ e

T×g
.
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and V̂ar (π̂p+1) be the estimators of vec (Ap+1) and Var
(
vec
(
Âp+1

))
, respectively. Then

(π̂p+1 − πp+1)>V̂ar (π̂p+1)
−1

(π̂p+1 − πp+1) ∼ χ2(g2).

If we assume that H0 : Ap+1 = O, then the above statistic becomes

π̂>p+1V̂ar(π̂p+1)π̂p+1 ∼ χ2(g2).

4.1.3 Lag selection

The number of parameters in Equation (28) is (p+ 1)g2 + g(g+1)
2 , and an extra lag would add another

g2 coefficients. So it is very important to determine the number of lags in the model. One option is to
use the following likelihood ratio test:

T
(

log
∣∣∣Σ̂(p)

∣∣∣− log
∣∣∣Σ̂(p+ 1)

∣∣∣) ∼ χ2(g2), (32)

where Σ̂(p) and Σ̂(p + 1) are the MLEs of Σ for VAR(p) and VAR(p + 1) models. Under the null,
H0 : Ap+1 = O, we are testing if the last coefficients are statistically significant.

We can also use the Akaike Information Criterion (AIC) and/or Schwarz-Bayesian Information
Criterion (BIC) for choosing the optimal number of lags:

AIC = T log
∣∣∣Σ̂∣∣∣+ 2m,

BIC = T log
∣∣∣Σ̂∣∣∣+m log T,

where m is the total number of parameters estimated in the VAR, and
∣∣∣Σ̂∣∣∣ is the determinant of Σ̂.

4.1.4 Granger causality

Let us divide the elements of the VAR(p) model into two groups as follows

Y>t =
[
Y>1,t Y>2,t

]
,

where Y>1,t and Y>2,t are 1× g1 and 1× g2 row vectors, respectively, with g1 + g2 = g:[
Y1,t

Y2,t

]
=

[
A10

A20

]
+

[
A

(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

][
Y1,t−1

Y2,t−1

]
+ · · ·+

[
A

(p)
11 A

(p)
12

A
(p)
21 A

(p)
22

][
Y1,t−p

Y2,t−p

]
+

[
e1,t

e2,t

]
.
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If Y2,t does not Granger cause Y1,t, then A
(1)
12 = · · · = A

(p)
12 = O.4 Granger causality refers only to

the effects of the past values of Y2,t on the current values of Y1,t. Granger causality does not exclude
the contemporaneous effects of Y1,t on Y2,t which is given by the correlation between e1,t and e2,t.

We can test Granger causality by running an F -test. The restricted and unrestricted models are:

Y1,t = A10 +

p∑
i=1

A
(i)
11 Y1,t−i + e1,t, (33)

Y2,t = A10 +

p∑
i=1

(
A

(i)
11 Y1,t−i + A

(i)
12 Y2,t−i

)
+ e1,t. (34)

Alternatively, we can compute the likelihood ratio test similar to the test (32):

T
(

log
∣∣∣Σ̃11

∣∣∣− log
∣∣∣Σ̂11

∣∣∣) ∼ χ2(pg1g2),

where Σ̃11 and Σ̂11 denote the estimates of Σ11 based on the residuals of equations (33) and (34),
respectively.

4.1.5 Impulse response functions

Consider the following VAR(1) process:[
xt

yt

]
=

[
a10

a20

]
+

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
xt−1

yt−1

]
+

[
ex,t

ey,t

]
,

or, in compact notation,
Yt = A0 + A1Yt−1 + et,

where

et ∼ IID(0,Σ), Σ =

[
σ2
x σxy

σyx σ2
y

]
,

We know that we can write any VAR(p) process as an infinite-order VMA process – i.e., here we can
write the VAR(1) model as

Yt = µ+

∞∑
i=0

Ai
1et−i,

where µ =
∑∞
i=0(Ai

1)A0.

4Similarly, if Y1,t does not Granger cause Y2,t, then A
(1)
21 = · · · = A

(p)
21 = O.
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Let us consider the following Cholesky decomposition of the variance covariance matrix Σ:

Σ = PP>

=⇒ P−1Σ(P>)−1 = I,

where P is a lower triangular matrix. So we have

Yt = µ+

∞∑
i=0

Ai
1PP−1et−i

= µ+

∞∑
i=0

Φ(i)εt−i, (35)

where Φ(i) = Ai
1P and εt−i = P−1et−i. Note that the variance of εt is

E
[
εtε
>
t

]
= E

[
P−1et−ie

>
t−i(P

>)−1
]

= P−1E
[
et−ie

>
t−i
]

(P>)−1

= P−1Σ(P>)−1

= I.

Examining (35) further, we can see[
xt

yt

]
=

[
µx

µy

]
+

∞∑
i=0

[
φ

(i)
11 φ

(1)
12

φ
(1)
21 φ

(1)
22

][
εx,t−1

εy,t−1

]
,

where φ(0)
12 captures the effect of a one unit change of εy,t on xt, φ

(1)
12 represents the impact of one unit

of εy,t−1 (εy,t) on xt (xt+1), and so on. All the coefficients of Φ(i) are known as the impulse response
functions (IRFs). Usually we plot the coefficients φ(i)

kj against i to visualise the impact of a shock on
the paths of the variables in Yt.

The cumulated sum of the effects of the shocks of εy,t on xt is

C(n) =

n∑
i=0

φ
(n)
12 .
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Also, consider our simple VAR(1) model again:

Yt = A0 + A1Yt−1 + et

P−1Yt = P−1A0 + P−1A1Yt−1 + P−1et

P−1Yt + Yt = Yt + P−1A0 + P−1A1Yt−1 + P−1et

Yt = (I−P−1)︸ ︷︷ ︸
D

Yt + P−1A0 + P−1A1Yt−1 + P−1et.

Clearly, D is a lower triangular matrix. The Cholesky decomposition imposes a recursive casual
structure from the top variables to the bottom variables but not on the other way around. Therefore,
the IRF is sensitive to the order of variables in Yt.

4.1.6 Forecast error variance decomposition

Consider again the simple VAR(1) model:

Yt = A0 + A1Yt−1 + et

=⇒ Yt+1 = A0 + A1Yt + et+1,

and suppose we would like to predict the value of the variables at t+ 1, but we only have information
up to t. At t+ 1 we have

Et[Yt+1] = A0 + A1Yt,

where Et is the conditional expectation operator. The one-step-ahead forecast error is

Yt+1 − Et[Yt+1] = et+1.

Using backwards substitution, we can write Yt+2 as

Yt+2 = A0 + A1(A0 + A1Yt + et+1︸ ︷︷ ︸)
Yt+1

+ et+2

= (I + A1)A0 + A2
1Yt︸ ︷︷ ︸

Et[Yt+2]

+ et+2 + A1et+1,

with the forecast error
Yt+2 − Et[Yt+2] = et+2 + A1et+1.
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Extending the procedure for the n-th step, we have

Yt+n = (I + A1 + · · ·+ An−1
1 )A0 + An

1 Yt︸ ︷︷ ︸
Et[Yt+n]

+

n−1∑
i=0

Ai
1et+n−i,

with the associated forecast error of

Yt+n − Et[Yt+n] =

n−1∑
i=0

Ai
1et+n−i.

Using the Cholesky decomposition from (35), we can rewrite the above equation as

Yt+n − Et[Yt+n] =

n−1∑
i=0

Φ(i)εt+n−i

Thus, the variance of the n-step ahead forecast error is

Var (Yt+n − Et[Yt+n]) = Var

(
n−1∑
i=0

Φ(i)εt+n−i

)

=

n−1∑
i=0

Var (Φ(i)εt+n−i)

=

n−1∑
i=0

Φ(i)Var (εt+n−i) Φ(i)>.

Looking into further detail of this matrix, we have

n−1∑
i=0

[
φ

(i)
11 φ

(i)
12

φ
(i)
21 φ

(i)
22

][
σ2
εx 0

0 σ2
εy

][
φ

(i)
11 φ

(i)
21

φ
(i)
12 φ

(i)
22

]
=

n−1∑
i=0

[
(φ

(i)
11 )2σ2

εx(φ
(i)
12 )2σ2

εy φ
(i)
11φ

(i)
21σ

2
εx + φ

(i)
12φ

(i)
22σ

2
εy

φ
(i)
11φ

(i)
21σ

2
εx + φ

(i)
12φ

(i)
22σ

2
εy (φ

(i)
21 )2σ2

εx + (φ
(i)
22 )2σ2

εy

]
.

Let us focus on the variance of the forecast error, σ2
x(n) = Var (xt+n − Et[xt+n]),

σ2
x(n) =

n−1∑
i=0

(φ
(i)
11 )2σ2

εx + (φ
(i)
12 )2σ2

εy .
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The proportion of σ2
x(n) due to shocks on εx,t and εy,t are, respectively,∑n−1

i=0 (φ
(i)
11 )2σ2

εx

σ2
x(n)

, and∑n−1
i=0 (φ

(i)
12 )2σ2

εy

σ2
x(n)

.

If (φ
(i)
12 )2 = 0 for all i, we say that the variable xt is exogenous (it does not depend on either the εy,t

shocks nor on the yt sequence).

4.1.7 Structural VAR

Consider the following VAR(1) process[
xt

yt

]
=

[
γ10

γ20

]
+

[
0 b12

b21 0

][
xt

yt

]
+

[
γ11 γ12

γ21 γ22

][
xt−1

yt−1

]
+

[
εx,t

εy,t

]
, (36)

where [
εx,t

εy,t

]
∼ IID

([
0

0

]
,

[
σ2
εx 0

0 σ2
εy

])
.

We can rewrite (36) as[
1 −b12

−b21 1

][
xt

yt

]
=

[
γ10

γ20

]
+

[
γ11 γ12

γ21 γ22

][
xt−1

yt−1

]
+

[
εx,t

εy,t

]
,

or simply
BYt = Γ0 + Γ1Yt−1 + εt. (37)

Premultiplying both sides by B−1, we obtain

Yt = B−1Γ0 + B−1Γ1Yt−1 + B−1εt

⇔ Yt = A0 + A1Yt−1 + et, (38)

where obviously A0 = B−1Γ0, A1 = B−1Γ1, and et = B−1εt. The system (37) is known as a
structural VAR (SVAR) model, while the system (38) is its reduced form representation, which is
exactly what we had in (24) and (25).

We have so far discussed estimation and inference of reduced form VARs. However, we are inter-
ested in the structural parameters. It makes more sense to derive the IRFs and the forecast variance
decomposition from the structural model instead of the reduced form model. In the example of Equa-
tion (36), there are 10 structural parameters, but we can only estimate 9 reduced form parameters
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from the reduced form representation in Equation (38) – i.e., without imposing any restriction on the
structural system, we will not be able to estimate the structural parameters from the reduced form
model.

In general, consider the following SVAR(p) model

BYt = Γ0 + Γ1Yt−1 + · · ·+ ΓpYt−p + εt,

where Yt is a g×1 vector. So there are (g2−g) structural parameters in matrix B (as the diagonal terms
are ones), (g + pg2) elements in the Γ matrices, and g variance terms in Var(εt).5 The corresponding
reduced form VAR is

Yt = A0 + A1Yt−1 + · · ·+ ApYt−p + et,

where we have (g+pg2) elements in the A’s and g+g2

2 in Σ. Therefore, we need to impose the following
number of restrictions:

(g2 − g) + (g + pg2) + g︸ ︷︷ ︸
# of structural parameters

− (g + pg2) +
g + g2

2︸ ︷︷ ︸
# of reduced form parameters

=
g2 − g

2
.

As an example, asserting that the reduced form VAR is the structural model is the same as imposing
the g2−g

2 a priori restrictions that A = I.
SVARs generally identify their shocks as coming from distinct independent sources and thus assume

that they are uncorrelated. The error series in reduced form VARs are usually correlated with each
other. One way to view these correlations is that the reduced from errors are combinations of a
set of statistically independent structural errors. The most popular SVAR method is the recursive
identification method. This method (used in the original Sims (1980) paper) uses simple regression
techniques to construct a set of uncorrelated structural shocks directly from the reduced form shocks.
This method sets A = I and creates a structure for the shocks to be uncorrelated.

5More generally, we could have an SVAR(p) system such as

BYt = Γ0 + Γ1Yt−1 + · · ·+ ΓpYt−p + Cεt,

where we would have (g2 − g) structural parameters in B, (g + pg2) in the Γ’s, g2 in C, and (g+g2)
2

parameters in
Var(εt).
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4.2 Bayes’ Rule for VARs

With all the prerequisites out of the way, we are ready to tackle BVARs. The notation from here on
out is going to be messy, so let’s stick to a simple example. Consider (25) the simple case where g = 2,[

y1,t

y2,t

]
=

[
a10

a20

]
+

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
y1,t−1

y2,t−1

]
+

[
e1,t

e2,t

]
,

which, following what we did in Section 4.1.2, we could also rewrite as6

Y>t = A>0 + Y>t−1A
>
1 + e>t ,

where

et ∼ N (0,Σ) , Σ =

[
σ2

1 σ12

σ21 σ2
2

]
.

We can also write our simple system in matrix notation as

Y>t =
[
1 Y>t−1

]
︸ ︷︷ ︸

Xt

[
A>0

A>1

]
︸ ︷︷ ︸

Π

+ e>t , (39)

so Y>t is a 1× g row vector. Then we can write the VAR(1) model has the same representation as the
seemingly unrelated regression (SUR) linear regression form:

Y
T×2

= X
T×(1+1)2

Π
(1+1)2×2

+ e
T×2

, (40)

and via OLS/ML we have:

Π̂ = (X>X)−1X>Y

= (X>X)−1X>(XΠ + e)

= Π + (X>X)−1X>e.

Now, recall the rules of the vec operator:

vec(ABC) = (C> ⊗A)vec(B),

6We can also easily add more lags, e.g.,

Y>t = A>0 + Y>t−1A>1 + · · ·+ Y>t−pA>p + e>t .
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and its corollary:

vec(AB) = (I⊗A)vec(B)

= (B> ⊗ I)vec(A).

Then use the vec operator on the (p+ 1)g × g matrix Π̂ and turn it into a long (p+ 1)g2 × 1 vector:

vec
(
Π̂
)

= vec (Π) + vec
(
(X>X)−1X>e

)
,

where we can show
Var

(
vec
(
Π̂
))

= Σ⊗ (X>X)−1,

which implies

Σ̂ =
1

T − (p+ 1)g

(
Y −XΠ̂

)> (
Y −XΠ̂

)
=

1

T − (p+ 1)g
ê>ê.

As shown before, Π̂ and Σ̂ are the MLEs of Π and Σ, respectively, and are obtained by maximising
the log likelihood function,

l(Y|Π,Σ) = −Tg
2

ln(2π)− T

2
ln |Σ| − 1

2
vec (Y −XΠ)

>
(I⊗Σ)

−1 vec (Y −XΠ)

=⇒ f(Y|Π,Σ) = (2π)−
Tg
2 |Σ|−T2 exp

{
1

2
vec (Y −XΠ)

>
(I⊗Σ)

−1 vec (Y −XΠ)

}
⇔ f(Y|Π,Σ) = (2π)−

Tg
2 |Σ|−T2 exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
× exp

{
−1

2
tr
(
Σ−1(Π− Π̂)>X>X(Π− Π̂)

)}
. (41)

Just for exposition, let’s look at the representation of our VAR model in Equation (39) again, with
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p = 1, g = 2, and t = 1, ..., T , in vector form. If we vectorise Π we get:

vec (Π) = vec

([
A>0

A>1

])

=



a10

a
(1)
11

a
(1)
12

a20

a
(1)
21

a
(1)
22


= β.

With β in hand, we can then rewrite our VAR(1) system as for period t as:

[
y1,t

y2,t

]
=

[
1 y1,t−1 y2,t−1 0 0 0

0 0 0 1 y1,t−1 y2,t−2

]


a10

a
(1)
11

a
(1)
12

a20

a
(1)
21

a
(1)
22


+

[
e1,t

e2,t

]

⇔ Yt = (I2 ⊗Xt)β + et.

Here is where our notation can get a bit awkward. Let’s define

y = vec (Y) =


Y1

...
YT

 ,
xt = Ig ⊗Xt,

u = vec (e) =


e1

...
eT

 ,
and so we have

y = xβ + u, (42)

where
u ∼ N (0, IT ⊗Σ).
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It then follows that
y|β,Σ ∼ N (xβ, IT ⊗Σ) ,

and the likelihood function is given by

f(y|β,Σ) = |2π(IT ⊗Σ)|− 1
2 exp

{
−1

2
(y − xβ)>(IT ⊗Σ)−1(y − xβ)

}
= (2π)−

Tg
2 |IT ⊗Σ|− 1

2 exp

{
−1

2
(y − xβ)>(IT ⊗Σ−1)(y − xβ)

}
, (43)

where the second equality holds because |IT ⊗Σ| = |Σ|T and (IT ⊗Σ)−1 = IT ⊗Σ−1. We could also
write the log likelihood as

f(y|β,Σ) = (2π)−
Tg
2 |IT ⊗Σ|− 1

2 exp

{
−1

2

T∑
t=1

(yt − xtβ)>Σ−1(yt − xtβ)

}
.

So we now have an expression for the likelihood function associated with the observed data. We
can then apply Bayes’ Rule where, in general, we can denote f(y|θ) as the observed likelihood, f(θ)

as the prior distribution, and f(θ|y) as the posterior distribution. Thus we have, as usual:

f(θ|y) =
f(y|θ)f(θ)

f(y)

∝ f(y|θ)f(θ).

4.3 The Minnesota prior

The simplest form of prior distributions for VAR models is known as the Minnesota (or Litterman)
prior, originally proposed by Litterman (1980, 1986). The basic intuition behind this prior is that the
behaviour of most macroeconomic variables is well approximated by a random walk with drift. Hence,
it centres the distribution of the coefficients in β at a value that implies a random-walk behaviour for
all the elements in, say, yt:

yt = c+ yt−1 + ut.

While not motivated by economic theory, these are computationally convenient priors, meant to capture
commonly held beliefs about how economic time series behave.

The Minnesota prior assumes that the coefficients A1, ...,Ap in (24) are a priori independent and
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normally distributed, with the following moments:

E
[
a

(l)
ij |Σ

]
=

δi, i = j, l = 1,

0, otherwise,
(44)

Var
(
a

(l)
ij |Σ

)
=


λ2

1

f(l) , for i = j,∀l,
σ2
i

σ2
j

(
λ1λ2

f(l)

)2

, for i 6= j,∀l,
(45)

Var (cij |Σ) = σ2
i (λ1λ4)2, ∀i. (46)

In the original Minnesota prior formulation, δi = 1, ∀i, yielding[
y1,t

y2,t

]
=

[
a10

a20

]
+

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
y1,t−1

y2,t−1

]
+

[
a

(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

][
y1,t−2

y2,t−2

]
+

[
e1,t

e2,t

]
[
y1,t

y2,t

]
=

[
0

0

]
+

[
δ1 0

0 δ2

][
y1,t−1

y2,t−1

]
+

[
0 0

0 0

][
y1,t−2

y2,t−2

]
+

[
e1,t

e2,t

]
[
y1,t

y2,t

]
=

[
1 0

0 1

][
y1,t−1

y2,t−1

]
+

[
e1,t

e2,t

]
,

which fits the assumption that each series is a random-walk. Note that this assumption may not be
appropriate if the variables in yt are strongly mean reverting. For series which are stationary, or
transformed to achieve stationarity, you can centre the distributions around zero.

The Minnesota prior assumes that lags of other variables are less informative than the autoregressive
lags, and that more recent lags are more informative than distant lags. This is captured by f(l). A
common choice for this function is a harmonic lag decay:

f(l) = lλ3 ,

where the severity of the lag is regulated by the hyperparameter λ3. The hyperparameters σ2
i and σ2

j

are often fixed using sample information, e.g., from univariate regressions of each variable onto its own
lags.

Importantly, λ1 is a hyperparameter that controls the overall tightness of the random walk prior.
If λ1 = 0, the prior information dominates, and the VAR reduces to a vector of univariate models.
Conversely, as λ1 → ∞ the prior becomes less informative, and the posterior mostly mirrors sample
information. Meanwhile, λ2 governs the variance of coefficient i to the lags of other coefficients, λ3

governs the informativeness of autoregressive lags, and λ4 covers the variance of exogenous variables.
To derive, start with the likelihood function. For the Minnesota prior, (42) is most convenient to
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work with:

y = xβ + u, u ∼ N (0,Σ⊗ IT )

=⇒ y ∼ N (xβ,Σ⊗ IT ) ,

and this gives the likelihood for y as

f(y|β,Σ) = (2π)−
gT
2 |Σ⊗ IT |−1/2 exp

{
−1

2
(y − xβ)>(Σ⊗ IT )−1(y − xβ)

}
,

and ignoring terms independent of β gives us:

f(y|β,Σ) ∝ exp

{
−1

2
(y − xβ)>(Σ⊗ IT )−1(y − xβ)

}
. (47)

Assuming that Σ is known,7 the prior for β is given by (73), and from Bayes’ Rule we have f(θ|y) ∝
f(y|θ)f(θ). Thus, we can simplify by keeping the kernel of the multivariate normal distribution,

f(β) ∼ N (β0,Ω0) , (48)

and write
f(β) ∝ exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
,

where remember that the elements of the variance-covariance matrix, Ω0, are given by (45) and (46).
The posterior for β is then multivariate normal, given by combining (43) and our prior distribution:

f(β|y) ∝ f(y|β)f(β)

∝ exp

{
−1

2
(y − xβ)>(IT ⊗Σ−1)(y − xβ)

}
exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
∝ exp

{
−1

2

[
(y − xβ)>(IT ⊗Σ−1)(y − xβ) + (β − β0)>Ω−1

0 (β − β0)
]}

, (49)

and as before, let’s manipulate the term inside the square brackets. Expand it out by “completing the
7Or replaced with an estimate, Σ̂.
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squares”:

y>(IT ⊗Σ−1)y − y>(IT ⊗Σ−1)xβ − (xβ)>(IT ⊗Σ−1)y + (xβ)>(IT ⊗Σ−1)xβ

+ β>Ω−1
0 β − β>Ω−1

0 β0 − β
>
0 Ω−1

0 β + β>0 Ω−1
0 β0

=y>(IT ⊗Σ−1)y − 2β>x>(IT ⊗Σ−1)y + (xβ)>(IT ⊗Σ−1)xβ

+ β>Ω−1
0 β − 2β>Ω−1

0 β0 + β>0 Ω−1
0 β0

=y>(IT ⊗Σ−1)y − 2β>
(
x>(IT ⊗Σ−1)y + Ω−1

0 β0

)
+ β>

(
x>(IT ⊗Σ−1)xβ + Ω−1

0 β
)

+ β>0 Ω−1
0 β0.

Then, we define

β̄ = Ω̄
(
Ω−1

0 β0 + x>(IT ⊗Σ−1)y
)

= Ω̄
(
Ω−1

0 β0 + (Σ−1 ⊗X>)y
)
,

Ω̄ =
(
Ω−1

0 + x>(IT ⊗Σ−1)x
)−1

=
(
Ω−1

0 + Σ−1 ⊗X>X
)−1

,

and then do our usual “add and subtract” trick:

y>(IT ⊗Σ−1)y − 2β>Ω̄
−1

Ω̄︸ ︷︷ ︸
=I

(
x>(IT ⊗Σ−1)y + Ω−1

0 β0

)
+ β>

(
x>(IT ⊗Σ−1)xβ + Ω−1

0 β
)

+ β>0 Ω−1
0 β0+β̄

>
Ω̄β̄ − β̄>Ω̄β̄︸ ︷︷ ︸

=0

,

and then clean up:

y>(IT ⊗Σ−1)y − 2β>Ω̄
−1
β̄ + β>Ω̄

−1
β + β>0 Ω−1

0 β0 + β̄
>

Ω̄
−1
β̄ − β̄>Ω̄

−1
β̄

=
[
β>Ω̄

−1
β + β̄

>
Ω̄
−1
β̄ − 2β>Ω̄

−1
β̄
]

+ y>(IT ⊗Σ−1)y + β>0 Ω−1
0 β0 − β̄

>
Ω̄
−1
β̄

=(β − β̄)>Ω̄
−1

(β − β̄) + y>(IT ⊗Σ−1)y + β>0 Ω−1
0 β0 − β̄

>
Ω̄
−1
β̄.

Thus, we can write (49) as

f(β|y) ∝ exp

{
−1

2

[
(y − xβ)>(IT ⊗Σ−1)(y − xβ) + (β − β0)>Ω−1

0 (β − β0)
]}

∝ exp

{
−1

2

[
(β − β̄)>Ω̄

−1
(β − β̄)

]}
exp

{
−1

2

[
y>(IT ⊗Σ−1)y + β>0 Ω−1

0 β0 − β̄
>

Ω̄
−1
β̄
]}

∝ exp

{
−1

2

[
(β − β̄)>Ω̄

−1
(β − β̄)

]}
. (50)
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This of course implies:
f(β|y) ∼ N

(
β̄, Ω̄

)
.

Here the posterior for β is multivariate normal, much like its conjugate prior. It’s once again worth
noting that this is the case where Σ is assumed to be a known quantity, and since we’re only interested
in the distribution of β, we can drop all terms not containing β to attain the proportional density as
expressed in (50).

4.3.1 Minnesota prior example

Consider a VAR model with two endogenous variables (g = 2) and two lags (p = 2), along with one
exogenous variable (m = 1). Each equation will involve k = gp + m = 2 × 2 + 1 = 5 coefficients to
estimate, implies a total of q = nk = 2× 5 = 10 coefficients for the whole model, so that β0 will be a
q × 1 vector:

β0 =



1

0

0

0

0

0

1

0

0

0



.

For the variance covariance matrix Ω0, it is assumed that no covariance exists between terms in
β, so that Ω0 is a diagonal matrix. Also, Litterman (1986) argued that the further the lag, the more
confident we should be that coefficients linked to this lag have a value of zero. Therefore, variances
should be smaller on further lags.

• For parameters in β relating endogenous variables to their own lags, the variance is given by:

σ2
aii =

(
λ1

lλ3

)2

,

where λ1 is the overall tightness parameter, l is the lag considered by the coefficient, and λ3 is a
scaling coefficient controlling the speed at which coefficients for lags greater than 1 converge to
0 with greater certainty.

44



4 Bayesian Estimation of VAR Models Advanced Macroeconomics II (MPhil Economics)

• For parameters related to cross-variable lag coefficients, the variance is given by:

σ2
aij =

σ2
i

σ2
j

(
λ1λ2

lλ3

)2

,

where σ2
i and σ2

j denote the OLS residual variance of the autoregressive models estimated for
variables i and j, and λ2 represents a cross-variable specific variance parameter.

• For exogenous variables (including constant terms), the variance is given by:

σ2
ci = σ2

i (λ1λ4)2,

where σ2
i is again the OLS residual variance of an autoregressive model previously estimated for

variable i, and λ4 is a large (potentially infinite) variance parameter.

Thus, Ω0 is a q × q diagonal matrix with three different types of variance terms on its main diagonal.
For instance, for the VAR model with g = 2, p = 2, and m = 1, we have

Ω0 =



λ2
1 0 0 0 0 0 0 0 0 0

0
σ2

1

σ2
2
(λ1λ2)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0
σ2

1

σ2
2

(
λ1λ2

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0
σ2

2

σ2
1
(λ1λ2)2 0 0 0 0

0 0 0 0 0 0 λ2
1 0 0 0

0 0 0 0 0 0 0
σ2

2

σ2
1

(
λ1λ2

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2


Different choices are possible λ1, λ2, λ3, and λ4. However, values typically found in the literature
revolve around:

λ1 = 0.1,

λ2 = 0.5,

λ3 = {1, 2},

λ4 = {102, ...,∞}.

Finally, since the Minnesota prior assumes that the variance covariance matrix of residuals Σ is known,
one has to decide how to define it. The original Minnesota prior assumes that Σ is diagonal, which
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as we’ve seen, conveniently implies independence between the VAR coefficients of different equations.
This property was useful at a time of limited computational power as it allows estimating the model
equation by equation. A first possibility is thus to set the diagonal of Σ equal to the residual variance
of individual autoregressive models run on each variable in the VAR. A second possibility is to use
the variance covariance matrix of a conventional VAR estimated by OLS/ML, but to retain only the
diagonal terms as Σ. Finally, as the model estimates all the equations simultaneously in this setting,
the assumption of a diagonal matrix is not required. Therefore, a third and last possibility consists in
using directly the entire variance covariance matrix of a VAR estimated by OLS/ML.

4.4 Natural conjugate Normal-Inverse-Wishart priors

A drawback of the Minnesota prior is its treatment of Σ – ideally, we want to treat Σ as an unknown
parameter. The natural conjugate prior allows us to do this in a way that yields analytical results.
But, as we shall see, this has some drawbacks.

The Normal-Inverse-Wishart (NIW) conjugate priors, or natural conjugate priors, are part of the
exponential family and are commonly used prior distributions for (Π,Σ) in VARs with Gaussian errors.
These assume a multivariate normal distribution for the regression coefficients, and an Inverse-Wishart
specification for the variance covariance matrix of the error term, and can be written as

β|Σ ∼ N (β0,Σ⊗Φ0) , (51)

Σ ∼ W−1 (Ψ0, ν0) , (52)

where (β0,Φ0,Ψ0,ν0) are the priors’ hyperparameters and W−1(·) denotes the Inverse-Wishart distri-
bution. Similar to the Minnesota prior, β0 is a q × 1 vector, Φ0 is a k × k diagonal matrix, and Σ is
the usual VAR residual variance covariance matrix, which implies that Σ ⊗Φ0 is a gk × gk or q × q
variance covariance matrix.

Definition 4 (Inverse-Wishart Distribution). An m × m random matrix Z is said to have an
Inverse-Wishart distribution, Z ∼ W−1(Ψ, ν), with shape parameter ν > 0 and scale matrix Ψ if its
density function is given by

f(Z; Ψ, ν) =
|Ψ| ν2

2
mν
2 Γm

(
ν
2

) |Z|− ν+m+1
2 exp

{
−1

2
tr
(
ΨZ−1

)}
,

where Γm(·) is the multivariate gamma function and tr(·) is the trace function. For ν > m + 1, we
have

E[Z] =
Ψ

ν −m− 1
.
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To derive, begin with the likelihood function given by Equation (43) again,

f(y|β,Σ) = (2π)−
Tg
2 |IT ⊗Σ|− 1

2 exp

{
−1

2
(y − xβ)>(IT ⊗Σ−1)(y − xβ)

}
.

But now since Σ is assumed to be unknown, IT⊗Σ cannot be disregarded as a proportionality constant.
Thus, we can can only simplify down to

f(y|β,Σ) ∝ |IT ⊗Σ|− 1
2 exp

{
−1

2
(y − xβ)>(IT ⊗Σ−1)(y − xβ)

}
.

After some algebraic manipulation, one can write this density as:

f(y|β,Σ) ∝ |Σ|−
(p+1)g

2 exp

{
−1

2
(β − β̂0)>

(
Σ⊗ (X>X)−1

)
(β − β0)

}
× |Σ|−

T−(p+1)g
2 exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
. (53)

Choosing β0 is quite simple, but the choice of Φ0 is quite difficult. We can adopt a Minnesota
prior scheme for β0, setting values around 1 for each element’s first-lag components, and 0 for cross
variable and exogenous coefficients. For Φ0 note the difference between the Minnesota prior (48) and
the natural conjugate prior (51): while Ω0 represents the full variance covariance matrix of β, Φ0 only
represents the variance for the parameters of one single equation in the VAR. Each such variance is
then scaled by the variable specific variance in Σ. This Kronecker structure implies that the variance
covariance matrix of one equation has to now be proportional to the variance covariance matrix of the
other equations, unlike in Ω0 in the Minnesota prior.

We could proceed as follows however: for lag terms (both own and cross lags), define the variance
as

σ2
aij =

1

σ2
j

(
λ1

lλ3

)2

,

where σ2
j is the unknown residual variance for variable j in the BVAR model, approximated by indi-

vidual AR regressions. For exogenous variables, define the variance as:

σ2
c = (λ1λ4)2.
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For instance with the g = 2, p = 2, and m = 1 VAR model, Φ0 would be

Φ0 =



1
σ2

1
λ2

1 0 0 0 0

0 1
σ2

2
λ2

1 0 0 0

0 0 1
σ2

1

(
λ1

2λ3

)2
0 0

0 0 0 1
σ2

2

(
λ1

2λ3

)2
0

0 0 0 0 (λ1λ4)2


,

and if one assumes a diagonal Σ as in the original Minnesota prior, we would have

Σ⊗Φ0 =



λ2
1 0 0 0 0 0 0 0 0 0

0
σ2

1

σ2
2
(λ1λ2)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0
σ2

1

σ2
2

(
λ1

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0
σ2

2

σ2
1
λ2

1 0 0 0 0

0 0 0 0 0 0 λ2
1 0 0 0

0 0 0 0 0 0 0
σ2

2

σ2
1

(
λ1

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2



.

If we compare this with the expression for Ω0 in the Minnesota prior, we see that Σ ⊗ Φ0 is a
special case of Ω0 when λ2 = 1. In this sense, the natural conjugate NIW prior appears as a Minnesota
prior that would not be able to provide tighter priors on cross-variable parameters, which may be an
undesirable assumption. For this reason, it is advised to set λ1 at a smaller value than for the Minnesota
prior (e.g., between 0.01 and 0.1), in order to compensate for the lack of extra shrinkage from λ2. For
the remaining hyperparameters, λ3 and λ4, the same values as the Minnesota prior may be applied.

With β0 and Φ0 in hand, the prior density for β can be written as:

f(β) ∝ |Σ|−
gp+m

2 exp

{
−1

2
(β − β0)

>
(Σ⊗Φ0)

−1
(β − β0)

}
. (54)

As for Σ, we have:
Σ ∼ W−1 (Ψ0, ν0) ,

where Ψ0 is a g×g scale matrix for the prior, and ν0 is prior degrees of freedom. While any choice can
be made for these hyperparameters according to prior information, the literature once again proposes
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standard schemes. For example, Ψ0 can be

Ψ0 = (ν0 − g − 1)


σ2

1 0 0 0

0 σ2
2 0 0

0 0
. . .

...
0 0 · · · σ2

g

 ,

and
ν0 = g + 2.

This specifies the prior degrees of freedom as the minimum possible to obtain well-defined mean and
variance. Indeed, this value implies that

E [Σ] =


σ2

1 0 0 0

0 σ2
2 0 0

0 0
. . .

...
0 0 · · · σ2

g

 .

In other words, the expectation of Σ is the diagonal variance covariance matrix obtained from individual
AR regressions and used as an estimate for Σ in the Minnesota prior. As with the Minnesota prior, it
is possible to implement alternative schemes.

With these elements, the kernel of the prior density for Σ is given by:

f(Σ) ∝ |Σ|−
ν0+g+1

2 exp

{
−1

2
tr
(
Σ−1Ψ0

)}
. (55)

Combine the likelihood and the priors to get

f(β,Σ|y) ∝ |Σ|−
gp+m

2 exp

{
−1

2

(
β − β̄

)> (
Σ⊗ Φ̄

)−1 (
β − β̄

)}
× |Σ|−

ν̄+g+1
2 exp

{
−1

2

(
Σ−1Ψ̄

)}
, (56)

where

β|Σ,y ∼ N
(
β̄,Σ⊗ Φ̄

)
, (57)

Σ|y ∼ W−1
(
Ψ̄, ν̄

)
, (58)

which is why refer to this as the “natural conjugate Normal-Inverse-Wishart” prior distribution, and
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where we also have

β̄ = vec
(
Π̄
)

= vec
(
Φ̄
[
Φ−1

0 Π0 + X>XΠ̂
])
, (59)

Φ̄ =
(
Φ0 + X>X

)−1
, (60)

Ψ̄ = Π̂
>

X>XΠ̂ + Π>0 Φ−1
0 Π0 + ê>ê− Π̄

>
(Φ−1 + X>X)Π̄, (61)

ν̄ = T + ν0. (62)

Note that obtaining the marginal distribution for Σ from the posterior (56) is trivial: integrating
out β is easy as it appears only in the first term as a multivariate normal. Following integration, only
the second term remains, which is the kernel of an inverse Wishart distribution, and thus we get (58).

We can then integrate out Σ to derive the marginal distribution for Π:

f(Π|y) ∝
∣∣∣Ig + Ψ̄

−1
(Π− Π̄)>Φ̄

−1
(Π− Π̄)

∣∣∣−T+ν0−g+1+g+gp+m−1
2

. (63)

This is the kernel of a matrix student distribution with mean Π̄, scale matrices Ψ̄ and Φ̄, and degrees
of freedom T + ν0 − g + 1:

Π ∼ T
(
Π̄, Ψ̄, Φ̄, ν̃

)
,

with
ν̃ = T + ν0 − g + 1.

This then implies that each individual element Πi,j of Π follows a univariate student distribution with
mean Π̄i,j , scale parameter Φ̄i,j × Ψ̄j,j , and degrees of freedom ν̃,

Πi.j ∼ t(Π̄i,j , Φ̄i,i × Ψ̄j,j , ν̃).

These statistics can be used to compute point estimates and draw inference for β and Σ.
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4.4.1 Natural conjugate Normal-Inverse-Wishart prior as dummy observables

The informative NIW priors in Equations (51)-(52) can be thought of as equivalent to having observed
dummy “pseudo” observations (Yd,Xd) of size T d such that

Ψ0 = (Yd −XdΠ0)>(Yd −XdΠ0),

ν0 = T d − gp−m,

β0 = vec(Π0)

= vec
([

(Xd)>Xd
]−1

(Xd)>Yd
)
,

Φ0 =
[
(Xd)>Xd

]−1
.

Once a set of pseudo-observations able to match the wished hyperparameters is found, the posterior
can be equivalently estimated using the extended samples:

Y∗ =

[
Y

Yd

]
,

X∗ =

[
X

Xd

]
,

which are of size T ∗ = T + T d. We can then obtain:

β|Σ,y ∼ N
(
β∗,Σ⊗

[
(X∗)>X

]−1
)
,

Σ|y ∼ W−1 (Ψ∗, T ∗ + ν0) .

Usually, it’s simply not possible to sample directly from the posterior distribution. As such, MCMC
algorithms are used.

The natural conjugate NIW prior has great advantages because we’re able to yield analytical
results. Also, notice that in Equations (51)-(52) we have a Kronecker product in the Inverse-Wishart
distribution’s scale factor. This comes from the definition of xt = (Ig ⊗Xt), which means that every
equation must have the same set of explanatory variables. As such, because the same set of regressors
appear in each equation, homoskedastic VARs can be written as SUR models. This symmetry across
equations means that homoskedastic VAR models have a Kronecker product in the likelihood, which
in turn implies that estimation can be broken into g separate least-squares calculations, each only of
dimension gp + m. The symmetry in the likelihood can be inherited by the posterior, if the prior
adopted also features a Kronecker product as in Equation (51).

But this has problems which make it rarely used in practice. Consider the following example: a
VAR which involves variables such as output growth and the growth in the money supply, where the
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researcher wants to impose the neutrality of money assumption. This implies that the coefficients on
the lagged money growth variables in the output growth equation are zero (but coefficients of lagged
money growth in other equations would not be zero). But as we just discussed, the xt = Ig ⊗Xt form
of the explanatory variables means that every equation must have same set of explanatory variables.
But if we do not maintain the xt form, then we don’t get analytical conjugate prior.

The other problem is that we cannot “almost impose” a neutrality of money restriction through
the prior – i.e., we cannot set prior mean over neutrality of money restriction and set prior variance
to a very small value. To see why, let individual elements of Σ be σij , and so the prior covariance
matrix has form Σ ⊗ Φ0. This implies prior covariance of coefficients in equation i is σiiΦ0. Thus,
prior covariance of the coefficients in any two equations must be proportional to one another. So while
we can “almost impose” coefficients on lagged money growth to be zero in all equations, we cannot do
it in a single equation!8

4.5 Independent priors

Up until now, we haven’t really used much economic theory – it’s just been brute forced algebra
regarding matrices and VAR models – and we haven’t departed too far from standard econometric
methods for VAR models. But let’s stop and consider Bayes’ Rule again. When we looked at linear
regression models, we had to make some strong assumptions about the prior density f(θ) when we
wanted to estimate β and σ2. Recall assumption (19) about the prior densities for β and σ2, f(β)

and f(σ2), being independent which allowed us to write f(θ) as the product of f(β) and f(σ2).
Here, for the VAR case, we’re going to make a similar assumption, namely,

f(θ) = f(β)f(Σ). (64)

Below we cover some common assumptions regarding the prior distributions, f(β) and f(Σ).

4.5.1 Diffuse (Jeffreys’) prior

A possible alternative to the Minnesota and natural conjugate NIW priors is the normal-diffuse, or
Jeffreys’, prior. It gets its namesake because it relies on a diffuse (uninformative) prior for Σ. The
Jeffreys’ prior is a good alternative to the independent NIW prior in Section 4.5.2 when one wants
to remain agnostic about the value that Σ should be given. The likelihood function and the prior
distribution for β are similar to those developed in the previous subsections and are thus respectively

8Note that the Minnesota prior form for Φ0 is not consistent with natural conjugate prior.
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given by:

f(y|β,Σ) ∝ |Σ|−T/2 exp

{
−1

2

(
β − β̂

)> [
Σ⊗ (X>X)−1

] (
β − β̂

)}
× exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
, (65)

and
f(β) ∝ exp

{
−1

2
(β − β0)

>
Ω−1

0 (β − β0)

}
. (66)

The main focal point of the diffuse prior is the prior distribution for Σ, which is:

f(Σ) ∝ |Σ|−(g+1)/2. (67)

This prior is called an improper prior as it integrates to infinity rather than to one. Yet, this does
not necessarily preclude the posterior distribution to be proper, which is indeed the case here.

Jeffreys’ priors are proportional to the square root of the determinant of the Fisher information
matrix, and are derived from the Jeffreys’ “invariance principle”, meaning that the prior is invariant to
re-parameterisation. Essentially, the priors act as non-informative or flat priors, and are designed to
extract the maximum amount of expected information from the data. They maximise the difference
(measured by the Kullback-Leibler distance) between the posterior and the prior when the number of
samples drawn goes to infinity.

With these priors, we can write the posterior distribution of the VAR parameters as

f(β,Σ|y) ∝ |Σ|−T/2 exp

{
−1

2

(
β − β̂

)> [
Σ⊗ (X>X)−1

] (
β − β̂

)}
× exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
× exp

{
−1

2
(β − β0)

>
Ω−1

0 (β − β0)

}
× |Σ|−(g+1)/2

∝ |Σ|−
T+g+1

2 exp

{
−1

2

[(
β − β̂

)> [
Σ⊗ (X>X)−1

] (
β − β̂

)
+ (β − β0)

>
Ω−1

0 (β − β0)

]}
× exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
. (68)
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This can be further simplified to

f(β,Σ|y) ∝ |Σ|−
T+g+1

2 exp

{
−1

2

(
β − β̄

)>
Ω̄
−1 (

β − β̄
)}

× exp

{
−1

2

[
β̂
> (

Σ−1 ⊗X>X
)
β̂ + β>0 Ω0β0 − β̄

>
Ω̄β̄
]}

× exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
,

where

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X>)y
]
, (69)

Ω̄ =
(
Ω−1

0 + Σ−1 ⊗X>X
)−1

. (70)

The posterior distribution for β is obtained by ignoring any term not involving β:

f(β|Σ,y) ∝ exp

{
−1

2

(
β − β̄

)>
Ω̄−1

(
β − β̄

)}
, (71)

which is recognised as the kernel of a multivariate normal distribution:

f(β|Σ,y) ∼ N
(
β̄, Ω̄

)
.

Meanwhile, the conditional posterior distribution for Σ is obtained from (68) by ignoring propor-
tional constants not involving Σ and rearranging:

f(Σ|β,y) ∝ |Σ|−
T+g+1

2 exp

{
−1

2
tr
(
Σ−1

[
(Y −XΠ̂)>(Y −XΠ̂)

])}
. (72)

This is the kernel of an Inverse-Wishart distribution:

f(Σ|β,y) ∼ W−1
(
Ψ̄, T − (p+ 1)g

)
,

where
Ψ̄ = (Y −XΠ̂)>(Y −XΠ̂).

Given the diffuse priors on Σ, the posterior for the autoregressive coefficients is centred at the MLE,
with posterior variance Σ ⊗ (X>X)−1. Under these assumptions, Bayesian probability statements
about the parameters (given the data) have the same form as the frequentist pre-sample probability
statements about the parameter estimators. In general, under widely applicable regularity conditions
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for a given estimator, β̂
∗
, where √

T (β̂
∗
− β)|β d→ N (0,Σ),

one can approximate the distribution
√
T (β − β̂

∗
)|β̂ as N (0,Σ) in large samples. Hence, we can

interpret (1−α) approximate confidence regions generated from the frequentist asymptotic approximate
distribution as if they were sets in the parameter space with posterior probability (1− α).

But, one set of assumptions in which there is a significant divergence between pre-sample frequentist
probability statements and Bayesian post-sample probability statements is the case of time series
models with unit roots. In such cases, while the frequentist distribution of the estimator is skewed
asymptotically, the posterior density function is unaffected.

4.5.2 Independent Normal-Inverse-Wishart priors

The natural conjugate NIW prior had β|Σ being normal and Σ being Inverse-Wishart, and the VAR
had the same explanatory variables in every equation. There, assuming an unknown Σ comes at
the cost of imposing a Kronecker structure on the prior distribution for β, constraining its variance
covariance matrix to be equal to Σ ⊗ Φ0. This structure creates, for each equation, a dependence
between the variance of the residual term and the variance of the VAR coefficients, which may be an
undesirable assumption. We want a more general setup without these restrictive features.

We can do this with a prior for the VAR coefficients and Σ being independent (hence the name
“independent NIW prior”). The independent Normal-Inverse-Wishart priors are commonly used prior
distributions for (Π,Σ) in VAR models with Gaussian errors. These assume a multivariate normal dis-
tribution for the regression coefficients, and an Inverse-Wishart distribution for the variance-covariance
matrix of the error term. An alternative way to see the restrictions generated by the natural conjugate
NIW prior is to notice that the variance covariance matrix for the VAR coefficients Σ⊗Φ0 correspond
to the more general variance covariance matrix used for the Minnesota prior in the special case where
λ2 = 1. That is, where the variance on cross-variable coefficients is as large as the variance on its own
lags for each equation.

Ideally, we would like to estimate BVAR model with Σ being treated as unknown, and an arbitrary
structure could be proposed for Ω0, with no assumed dependence between residual variance and
coefficient variance. Such a prior, known as the independent Normal-Inverse-Wishart prior, is feasible
but implies the sacrifice of analytical solutions in favour of numerical methods. The analysis starts
the usual way: first obtain the likelihood from the data. There is no change here and the likelihood is
given by:

f(y|β,Σ) ∝ |Σ|−T/2 exp

{
−1

2

(
β − β̂

)> [
Σ⊗ (X>X)−1

]−1
(
β − β̂

)}
× exp

{
−1

2
tr
(

Σ−1(Y −XΠ̂)>(Y −XΠ̂)
)}

.
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For the VAR(p) system with parameters Π (or, equivalently, β) and Σ, our independent priors
are:9

β ∼ N (β0,Ω0), (73)

Σ ∼ W−1(Ψ0, ν0), (74)

where (β0,Ω0,Ψ0, ν0) are the hyperparameters for the priors. 10 Note here here that Ω0 is now an
arbitrary g2(p + 1) × g2(p + 1) matrix, not necessarily adopting a Kronecker structure. β0, on the
other hand, is the usual g2(p + 1) mean vector. In typical applications, Ω0 will take the form of the
Minnesota variance covariance matrix, but any choice is possible. Similarly, β0will typically be defined
as the Minnesota β0 vector, but any structure of vector β0 could be adopted.

Combining the likelihood function and our prior distributions gives us our posterior:

f(β,Σ|y) ∝ |Σ|−T/2 exp

{
−1

2

(
β − β̂

)> [
Σ⊗ (X>X)−1

]−1
(
β − β̂

)}
× exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
× exp

{
−1

2
(β − β0)>Ω−1

0 (β − β0)

}
× |Σ|−

ν0+g+1
2 exp

{
−1

2
tr
(
Σ−1Ψ0

)}
,

and doing some cleaning up yields:

f(β,Σ|y) ∝ |Σ|−
T+ν0+g+1

2 exp

{
−1

2

[
(β − β0)

> [
Σ−1 ⊗ (X>X)

]
(β − β0) + (β − β0)>Ω−1

0 (β − β0)
]}

× exp

{
−1

2
tr
(
Σ−1

[
Ψ0 + (Y −XΠ̂)>(Y −XΠ̂)

])}
.

9We are reusing our previous notation here where Ω0 = Var(β) is our prior for the variance covariance matrix of the
coefficient vector.

10This prior of course implies:

f(β) ∝ exp

{
−
1

2
(β − β0)

>Ω−1
0 (β − β0)

}
,

f(Σ) ∝ |Σ|−
ν0+g+1

2 exp

{
−
1

2
tr
(
Σ−1Ψ0

)}
.
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Finally, we can write this posterior density as

f(β,Σ|y) ∝ |Σ|−
T+ν0+g+1

2 exp

{
−1

2
(β − β̄)>Ω̄

−1
(β − β̄)

}
× exp

{
−1

2
β̂
>

(Σ−1 ⊗X>X)β̂ + β>0 Ω−1
0 β0 − β̄

>
Ω̄
−1
β̄

}
× exp

{
−1

2
tr
(
Σ−1

[
Ψ0 + (Y −XΠ̂)>(Y −XΠ̂)

])}
, (75)

with

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X>)y
]
,

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X>X
]−1

.

As it stands, due to the general structure of Ω0, there is no way to attain an analytical solution for
the marginal distributions of β and Σ.

But, we can derive conditional distributions and a Gibbs sampler. For the VAR(p) model with
likelihood function (43) and priors (73) and (74), denote the two conditional densities as: f(β|y,Σ)

and f(Σ|y,β).
The first one for β is easy to write out, as standard linear regression results apply:

β|Σ,y ∼ N (β̄, Ω̄),

=⇒ f(β|Σ,y) ∝ exp

{
−1

2
(β − β̄)>Ω̄

−1
(β − β̄)

}
. (76)

Next, we deal with f(Σ|y,β). First, note the following “trace rule”:

tr(ABC) = tr(BCA) = tr(CAB).

Now, combine the likelihood, f(y|β,Σ), and the prior, f(Σ), to get

f(Σ|y,β) ∝ f(y|β,Σ)f(Σ)

∝ |Σ|−
T+ν0+g+1

2 exp

{
−1

2
tr
(
Σ−1

[
Ψ0 + (Y −XΠ̂)>(Y −XΠ̂)

])}
, (77)

where we have dropped proportional constants. Note that this is the kernel of an Inverse-Wishart
density. In fact, we have

Σ|y,β ∼ W−1
(
Ψ̄, ν0 + T

)
,
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where
Ψ̄ = Ψ0 + (Y −XΠ̂)>(Y −XΠ̂).

The Gibbs sampler can then be summarised as follows:

1. Fix starting values β(0) and Σ(0) for two parameters, β and Σ.

2. Draw first value of β, β(1), from the conditional posterior, f(β|y,Σ(0)) (multivariate normal as
in (76)).

3. Draw first value of Σ, Σ(1) from the conditional posterior, f(Σ|y,β(1)) (Inverse-Wishart as in
(77)), using β(1).

4. Start a new cycle: draw value β(2) from the conditional posterior, f(β|y,Σ(1)), using Σ(1).

5. Draw value Σ(2) from the conditional posterior, f(Σ|y,β(2)), using β(2).

6. Repeat process S times.

Note that Ω0 can be set to anything that a researcher chooses (not restricting like the Σ⊗Φ0 form of
the natural conjugate NIW prior) – e.g., β0 and Ω0 can be set as in the Minnesota prior, or setting
ν0 = Ψ0 = Ω0 = 0 gives us the uninformative prior.

4.6 Dummy observation priors

We briefly covered this in Section 4.4, but it’s worth spending a bit more time on this. Most of the
BVAR applications covered so far have been relying on the prior structure of the Minnesota prior. That
is, for a VAR model with g endogenous variables, m exogenous variables, and p lags, the prior mean for
the VAR coefficients is a q × 1 = g(gp+m)× 1 vector, β0, while the prior variance covariance matrix
is a q × q matrix, Ω0, with variance terms on the diagonal, and zero entries off diagonal, implying no
prior covariance between the coefficients.

While this representation is convenient, it results in three main shortcomings. The first is technical
and linked to the estimation of large models. Indeed, for all the priors adopting this Minnesota
structure, estimation of the posterior mean, β̄, and the posterior variance, Ω̄, involves the inversion of
a q × q matrix. For instance, in the case of a large model with 20 endogenous variables, 20 exogenous
variables, and 10 lags, the number of rows and columns of Ω0 would be 20(20 × 10 + 20) = 4, 400.
This means that each iteration of the Gibbs sampler requires the inversion of a 4, 400× 4, 400 matrix,
rendering the process so slow that it becomes practically intractable. In the worst case, such very large
matrices may even cause numerical software to fail the inversion altogether.

The second shortcoming is theoretical: with this structure, no prior covariance is assumed among
the VAR coefficients, which may be suboptimal. Of course, one could simply add off-diagonal terms
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in Ω0 in order to create prior covariance terms. However, there is no no all-ready theory to indicate
what those values should be.

The third issue is that with this kind of structure, it is very difficult to impose priors on combinations
of VAR coefficients, which can yet be useful when working with unit root or co-integrated processes.

To remedy these shortcomings, in this section we will look at the dummy coefficient prior.
Consider first the prior distribution. As shown by Equation (41), it is possible to express the

likelihood function for the data:

f(Y|Π,Σ) ∝ |Σ|−T2 exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
× exp

{
−1

2
tr
(
Σ−1(Π− Π̂)>X>X(Π− Π̂)

)}
,

where
Π̂ = (X>X)−1X>Y.

This likelihood function is then combined with a joint improper prior for β and Σ:

f(β,Σ) ∝ |Σ|−(g+1)/2,

which is the simplest and least informative prior that one can propose for a VAR model. Combining
the likelihood function with the improper prior, one obtains the posterior distribution as:

f(β,Σ|y) ∝ |Σ|−
T+g+1

2 exp

{
−1

2
tr
(
Σ−1(Y −XΠ̂)>(Y −XΠ̂)

)}
× exp

{
−1

2
tr
(
Σ−1(Π− Π̂)>X>X(Π− Π̂)

)}
,

which looks like the product of a Inverse-Wishart distribution and matrix normal distribution.
A few remarks about the above posterior distribution:

1. As the product of a matrix normal distribution with an Inverse-Wishart distribution, this pos-
terior is immediately comparable to that obtained for the NIW prior. It can then be shown that
similarly to the NIW prior, the marginal posterior distributions for Σ and Π are respectively
Inverse-Wishart and matrix student. They are parameterised as:

Σ ∼ W−1
(
Ψ̂, ν̂

)
,
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with

Ψ̂ = (Y −XΠ̂)>(Y −XΠ̂),

ν̂ = T − (gp+m).

We also have
Π ∼ T (Π̂, Ψ̂, Φ̂, ν̃),

with

Φ̂ = (X>X)−1,

ν̃ = T − g − (gp+m) + 1.

2. This prior solves the dimensionality issue. While the Minnesota requires the inversion of a q× q
matrix, it is apparent that this prior only requires the inversion of a (gp+m)× (gp+m) matrix.
The intuition behind the result is similar to that of the natural conjugate NIW: the posterior is
computed at the scale of individual equations, rather than for the full model simultaneously.

3. An uninformative prior for β and Σ yields posterior estimates centred at OLS/ML values. By
not providing any prior information on the mean of the estimates, and setting a flat distribution
with infinite variance, one does hardly more than performing OLS estimation, using only the
information provided by the data.

4. But just getting OLS estimates has a drawback: The strength of Bayesian estimation is precisely
to be able to supplement the information contained in the data with personal information, in
order to inflect the estimates provided by the data and improve the accuracy of the model. If
one does not provide any information at all, there is, in fact, very little point in using Bayesian
methods. Ideally, one would thus like to provide prior information for the model, despite the
diffuse prior. We can do this with dummy observations.

Consider the possibility of generating artificial data for the model, Yd and Xd:

Yd =


diag

(
ρσ1

λ1
, ..., ρσnλ1

)
Og(p−1)×g

Om×g

diag (σ1, ..., σn)

 , (78)

Xd =


Jp⊗diag

(
ρσ1

λ1
, ..., ρσnλ1

)
Ogp×m

Om×gp

(
1

λ1λ4

)
⊗ Im

Og×gp Og×m

 , (79)
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where ρ denotes the value of the autoregressive coefficient on first lags in the Minnesota prior, and
σ1, ..., σn denotes, as usual, the standard deviation of the OLS residual obtained from individual
autoregressive models. Jp is defined as

Jp = diag
(
1λ3 , 2λ3 , ..., pλ3

)
.

Yd is of dimension (g(p+ 1) +m)× g, and Xd is of dimension (g(p+ 1) +m)× (gp+m). Considering
that each row of Yd (or Xd) corresponds to an artificial period, one obtains a total of Td = g(p+1)+m

simulated time periods. Note that unlike the canonical VAR model, Xd does not correspond to lagged
values of Yd.

Both matrices Yd and Xd are made of three blocks. The first block, made of the first gp rows,
is related to the moment of the VAR coefficients corresponding to the endogenous variables of the
model. The second block, made of the next m rows, represents the moments of the coefficients on the
exogenous variables. Finally, the last block, made of the last g rows, deals with the residual variance
covariance matrix.

To make this more concrete, consider a simple example: a VAR model with two endogenous
variables and two lags, along with one exogenous variable (g = 2,m = 1, p = 2):[

y1,t

y2,t

]
=

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
y1,t−1

y2,t−1

]
+

[
a

(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

][
y1,t−2

y2,t−2

]
+

[
c11

c21

]
x1,t +

[
e1,t

e2,t

]
.

For Td periods, reformulated in the usual stacked form, one obtains:

ρσ1

λ1
0

0 ρσ2

λ1

0 0

0 0

0 0

σ1 0

0 σ2


=



1λ3 σ1

λ1
0 0 0 0

0 1λ3 σ2

λ1
0 0 0

0 0 2λ3 σ1

λ1
0 0

0 0 0 2λ3
σ2
λ1 0

0 0 0 0 1
λ1λ4

0 0 0 0 0

0 0 0 0 0




a

(1)
11 a

(1)
21

a
(1)
12 a

(1)
22

a
(2)
11 a

(2)
21

a
(2)
12 a

(2)
22

c11 c21

+



e1,1 e2,1

e1,2 e2,2

e1,3 e2,3

e1,4 e2,4

e1,5 e2,5

e1,6 e2,6

e1,7 e2,7


.

Note the first block is 2× 2 rows, the second is 1 row, and the third is 2 rows.
Let’s take a look at the third block (the last two rows), and consider the entries related to the first

variable (the first column):

σ1 = e1,6,

0 = e1,7.
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Taking expectations of e1,7, one gets

E[e1] = 0,

Var(e1) = σ2
1 .

This simply replicates the prior variance for e1 in the natural conjugate NIW prior.
Now, look at block 1. The first row gives:

ρσ1

λ1
= 1λ3

σ1

λ1
a

(1)
11 + e1,1

=⇒ a
(1)
11 =

ρ

1λ3
− λ1

1λ3σ1
e1,1

=⇒ E
[
a

(1)
11

]
= ρ,

Var
(
a

(1)
11

)
= λ2

1.

The second row gives

0 = 1λ3
σ1

λ1
a

(1)
21 + e2,1

=⇒ a
(1)
21 = − λ1

1λ3σ1
e2,1

=⇒ E
[
a

(1)
21

]
= 0,

Var
(
a

(1)
11

)
=
σ2

2

σ2
1

λ2
1.

Then, look at block 2. Develop the first entry of row 5:

0 =
c11

λ1λ4
+ e1,5

=⇒ c11 = −λ1λ4e1,5

=⇒ E [c11] = 0,

Var (c11) = (λ1λ4)2σ2
1 .

Going on the same way with the other entries of blocks 1 and 2, it is straightforward to see that one
will recover the full diagonal of the prior variance covariance matrix for β implemented in the natural
conjugate NIW prior!
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But, theres more:

Cov
(
a

(1)
11 , c11

)
= E

[(
a

(1)
11 − E[a

(1)
11 ]
)

(c11 − E[c11])
]

= E
[
a

(1)
11 c11 − a(1)

11 E[c11]− E[a
(1)
11 ]c11 + E[a

(1)
11 ]E[c11]

]
= E

[
a

(1)
11 c11 − ρc11

]
= E

[(
ρ

1λ3
− λ1

1λ3σ1
e1,1

)
(−λ1λ4e1,5)− ρ (−λ1λ4e1,5)

]
= E

[
−ρλ1λ4e1,5

1λ3
+
λ1e1,1λ1λ4e1,5

1λ3σ1
+ ρλ1λ4e1,5

]
= λ2

1λ4σ1.

This shows that unlike the normal conjugate NIW prior, the dummy observation setting allows us to
implement some prior covariance between the VAR coefficients of the same equation. In this respect,
the dummy observation scheme is even richer than the NIW prior.

To conclude our discussion on the basic dummy observation strategy, we show how it combines
with the simplified prior introduced at the beginning of the subsection. This is done in a simple way:

Y∗ =

[
Y

Yd

]
,

X∗ =

[
X

Xd

]
,

and where T ∗ = T + T d. That is, Y∗ and X∗ are obtained by concatenating the dummy observation
matrices at the top of the actual data matrices, Y and X. We can then conduct estimation and
inference as usual.

Uses for the dummy specification prior include large models when variables are introduced in levels.
Because such variables typically include unit roots, the model itself should be characterised by one
(or more) unit roots. However, with large models, each draw from the posterior distribution produces
VAR coefficients for a large number of equations. This significantly increases the risk that for any
draw, at least one equation will obtain coefficients that are actually explosive (have a root greater
than one in absolute value) rather than comprising a strict unit root. This may result, for instance, in
explosive confidence bands for the IRFs. It would thus be desirable to set a prior that would force the
VAR process towards a unit root rather than explosive roots. This can be done in one of two ways:

1. Sum of coefficients approach: As stated above, this forces the VAR process towards a unit root.

2. Initial dummy observation approach: Forces the process towards co-integration. One sets a
prior for the model’s unconditional mean for the dependent variable. The model remains at
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its unconditional mean os that it is stationary despite its unit roots: it must therefore be co-
integrated.

4.7 Block exogeneity prior

This concept is closely related to that of Granger causality in standard VAR models. To clarify things,
consider again the simple example developed in Section 4.3 when we looked at the mean and variance
of the Minnesota prior, with g = 2, p = 2, and m = 1:[

y1,t

y2,t

]
=

[
a

(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
y1,t−1

y2,t−1

]
+

[
a

(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

][
y1,t−2

y2,t−2

]
+

[
c11

c21

]
x1,t +

[
e1,t

e2,t

]
. (80)

Suppose that one believes that the second variable does not affect the first variable, that is, it has
no impact on it. In terms of the example model, this is as if y1,t is exogenous to y2,t, and translates
to: [

y1,t

y2,t

]
=

[
a

(1)
11 0

a
(1)
21 a

(1)
22

][
y1,t−1

y2,t−1

]
+

[
a

(2)
11 0

a
(2)
21 a

(2)
22

][
y1,t−2

y2,t−2

]
+

[
c11

c21

]
x1,t +

[
e1,t

e2,t

]
. (81)

If the above model is the correct representation of the relation between y1 and y2, then we would like
to obtain this representation from the posterior of the VAR model. This turns out to be quite easy to
implement.

We can set a 0 prior mean on the relevant coefficients, and an arbitrarily small prior variance on
them, that way the posterior values will be close to 0 as well. In practice, this means that we would
set the prior mean in line with a conventional Minnesota prior, and in vector form β0 would be:

β0 =



1

0

0

0

0

0

1

0

0

0



.

This guarantees that the prior mean of any block exogenous coefficient is 0. Then, we can use the
following variance covariance scheme: multiply the block exogenous variance by an additional para-
meter, λ2

5, which will be set to an arbitrary small value. This will result in a very tight prior variance
on these coefficients. In practice, one may, for example, use the value: λ5 = 0.001. Using this strategy
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on the above example, one gets:

Ω0 =



λ2
1 0 0 0 0 0 0 0 0 0

0
σ2

1

σ2
2
(λ1λ2λ5)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0
σ2

1

σ2
2

(
λ1λ2λ5

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0
σ2

2

σ2
1
(λ1λ2)2 0 0 0 0

0 0 0 0 0 0 λ2
1 0 0 0

0 0 0 0 0 0 0
σ2

2

σ2
1

(
λ1λ2

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2


Because the prior variance will be very close (in fact it an be made close to 0 by reducing the value of
λ5), the posterior distribution will be extremely tight around 0, as desired.

Of course, block exogeneity need not be limited to one variable only. One may create as many
exogenous blocks as required. One need only multiply the prior variance of all the relevant coefficients
by λ2

5 to obtain the desired exogeneity on the posterior mean.
Finally, it should be mentioned that block exogeneity is available with the Minnesota, independ-

ent NIW, and normal diffuse priors, but not with the natural conjugate NIW prior nor the dummy
observation prior. For the dummy observation prior, the reason is obvious: the prior is diffuse, so
Σ ⊗ Φ0 is simply not defined. For the natural conjugate NIW prior, it is the particular Kronecker
structure Σ⊗Φ0 in place of the covariance matrix Ω0 that causes instability. This structure implies
that the variance of one equation has to be proportional with the variance of the other equations.
Hence, imposing block exogeneity on one variable for one equation would lead to imposing it on all
the other equations. Not only would it lead to assuming block exogeneity on some equations where
it’s not desired, but it would also lead to some of the model variables to be exogenous to themselves,
which is impossible.

4.8 Time varying parameters VAR

A time-varying parameter VAR (TVP-VAR) model differs from fixed-coefficient VAR models in that
they allow the parameters of the model to vary over time, according to a specified law of motion.

The basic TVP-VAR is of the form

yt = A1,tyt−1 + · · ·+ Apyt−p + Ct + ut, (82)

where the constant coefficients are now replaced by the time-varying Aj,t. We can rewrite the above
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in compact form as:
yt = xtβt + ut, ut ∼ N (0,Σ)

where xt is defined similar to (42),

xt = Ig ⊗
[
1,y>t−1, ...,y

>
t−p
]
,

and

βt = vec




A>1,t
...

A>p,t

C>t


 .

It is common to assume that the coefficients follow a random-walk process:

βt = βt−1 + ςt, (83)

with
ςt ∼ N (0,Υ),

and the initial conditions β0 are treated as parameters. Here we make the simplifying assumption that
the covariance matrix Υ is restricted to be a diagonal,11 and the innovations ςt are uncorrelated with
ut.

The law of motion for β, (83) – i.e., the state equation – implies that

βt+1|βt,Υ ∼ N (βt,Υ),

which can be used as a prior distribution for βt+1. Hence, the prior for all the states (i.e., βt∀t) is a
product of normal distributions. To complete the model specification, consider independent priors for
Σ,β0, and the diagonal elements of Υ;

Σ ∼ W−1 (Ψ0, ν0) ,

β0 ∼ N (β0,Ω0) ,

υi ∼ Γ−1 (νυi0 ,Ψυi
0 ) .

11So we have
Υ = diag(υ1, ..., υg(gp+m)).
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4.8.1 TVP-VAR estimation

We now outline an Gibbs sampler to estimate the TVP-VAR model. The model parameters are β0,
Σ, and Υ, and the states are β = (β>1 , ...,β

>
T )>, We therefore consider a 4-block Gibbs sampler.

First, to sample β, we rewrite the observation equation, (82), as

y = Xβ + u, u ∼ N (0, IT ⊗Σ),

and

X =


x1 O

x2

. . .

O xT

 .
Hence, we have

y|β,Σ ∼ N (xβ, IT ⊗Σ) .

So we have reframed the TVP-VAR as a normal linear regression model. Next, we derive the prior for
β. Rewrite the law of motion (83) in matrix notation:

Hβ = α̃β + ς,

where

ς ∼ N (0, IT ⊗Υ) ,

α̃β =
(
β>0 ,0, ...,0

)>
,

H =



Ig(gp+m) O

−Ig(gp+m) Ig(gp+m)

−Ig(gp+m) Ig(gp+m)

. . . . . .

O −Ig(gp+m) Ig(gp+m)


.

Note that H is of dimension Tg(gp+m)× Tg(gp+m), and is a multivariate generalisation of a first
difference matrix. We assume that |H| = 1, and is therefore invertible. We won’t cover it here, but
one can show that

H−1α̃β = 1T ⊗ β0.
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Therefore, the prior of β is given by

β|β0,Υ ∼ N
(
1T ⊗ β0,

[
H>(IT ⊗Υ−1)H

]−1
)
.

Finally, by standard linear regression results, we obtain

β|y,Σ,β0,Υ ∼ N
(
β̄, Ω̄

)
, (84)

where

β̄ = Ω̄
[
H>(IT ⊗Υ−1)H(1T ⊗ β0) + X>(IT ⊗Σ−1)y

]
,

Ω̄ =
[
H>(IT ⊗Υ)H + X>(IT ⊗Σ−1)X

]−1
.

Next we can show that the marginal distribution for Σ is given by

Σ|y,β,Υ ∼ W−1

(
Ψ0 +

T∑
t=1

(yt −Xtβt)(yt −Xtβt)
>, ν0 + T

)
. (85)

In addition, each of the diagonal elements of Υ has an Inverse-Gamma distribution:

υi|y,β,β0 ∼ Γ−1

(
νυi0 +

T

2
,Ψυi

0 +
1

2

T∑
t=1

(βit − βi(t−1))
2

)
. (86)

Finally, since β0 only appears in the first state equation:

β1 = β0 + ς1, ς1 ∼ N (0,Υ).

Given the normal prior, β0 ∼ N (β0,Ω0), we can use standard linear regression results to get

β0|y,β,Υ ∼ N
(
β̄

0
, Ω̄

0
)
,

with

β̄
0

= Ω̄
0 (

Ω0β0 + Υ−1β1

)
,

Ω̄
0

= Ω0 + Υ.

The Gibbs sampler is summarised as follows: Pick some initial values for β(0),Σ(0),Υ(0), and β0(0),
then repeat the following steps from s = 1, ..., S:

1. Draw β(s) ∼
(
β|y,Σ(s−1),Υ(s−1),β0(s−1)

)
(multivariate normal)
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2. Draw Σ(s) ∼
(
Σ|y,β(s),Υ(s−1),β0(s−1)

)
(Inverse-Wishart)

3. Draw Υ(s) ∼
(
Σ|y,β(s),Σ(s),β0(s−1)

)
(independent Inverse-Gammas)

4. Draw β0(s) ∼
(
Σ|y,β(s),Σ(s),Υ(s)

)
(multivariate normal)

4.9 VAR with stochastic volatility

When stochastic volatility is added to the framework (referred to as an SV-VAR), the VAR innovations
are assumed to still be normally distributed, but with variance that evolves over time. We start with
a constant coefficient VAR and write it as a linear regression in which the errors have a time varying
covariance matrix, Σt:

yt = Xtβ + ut, ut ∼ N (0,Σt). (87)

Ideally, we want Σt to evolve smoothly, while at each time period Σt is a valid variance covariance
matrix – i.e., it is positive definite and symmetric. This methods follows that of Cogley and Sargent
(2005).

The idea is to model Σt as
Σ−1
t = P>Λ−1

t P,

where Λt is a diagonal matrix and P is a lower triangular matrix with ones on the main diagonal:

Λt =


exp(h1,t) 0 · · · 0

0 exp(h2,t) · · · 0
...

...
. . .

...
0 0 · · · exp(hg,t)

 ,

P =



1 0 0 · · · 0

p21 1 0 · · · 0

p31 p32 1 · · · 0
...

...
...

. . .
...

pg1 pg2 · · · pg(g−1) 1


.

By construction, Σt is symmetric and positive definite for any values of ht = (h1,t, ...,g,t )> and
p = (p21, p31, p32, ..., pg1, ..., pg(g−1))

>. Note that the dimension of p is g(g − 1)/2. Then, each hi,t is
specified independently using a univariate stochastic volatility model. More precisely, each hi,t evolves
according to the following random walk:

hi,t = hi(t−1) + uhi,t, ui,t ∼ N (0, σ2
h,i),

69



4 Bayesian Estimation of VAR Models Advanced Macroeconomics II (MPhil Economics)

and hi,0 is treated as an unknown parameter.
In contrast, the parameters p are restricted to be constant here.12

By construction Σt = P−1Λt(P
−1)>, and therefore we can express each element of Σt in terms of

the elements of Λt and
P−1 = (pij).

More precisely, we have

σii,t = exp(hi,t) +

i−1∑
k=1

exp(hk,t)(p
ik)2, i = 1, ..., n = gp+m.,

σij,t = pij exp(hj,t) +

j−1∑
k=1

pikpjk exp(hk,t), 1 ≤ j < i ≤ n,

where σij,t is the (i, j) element of Σt. In particular, the log-volatility h1,t affects the variances of all
the variables, whereas hn,t impacts only the last variable.

In addition, despite the assumption of a constant matrix P, this setup allows for some form of
time-varying correlations among the innovations. This can be seen via a simple example. Using the
formulas above, we have

σ11,t = exp(h1,t),

σ22,t = exp(h2,t) + exp(h1,t)(p
21)2,

σ12,t = p21 exp(h1,t).

We have used the fact that P−1 is a lower triangular matrix with ones on the main diagonal, and
therefore p11 = 1 and p12 = 0. Now, the (1, 2) correlation coefficient is given by

σ12,t

(σ11,tσ22,t)1/2
=

p12

(exp(h2,t − h1,t) + (p21)2)
1/2

.

Hence, as long as h1,t and h2,t are not identical for all t, this correlation coefficient is time varying.
To complete the model specification, consider independent priors for β,p,σ2

h = (σ2
h,1, ..., σ

2
h,n)>,

12Primiceri (2005) considers an extension where these parameters are time varying and modelled as random walks.
It turns out all that is needed is an extra block to sample these time varying parameters from a linear Gaussian state
space model.
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and h0 = (h10, ..., hn0)>:

β ∼ N (β0,Ω0) ,

p ∼ N (p0,Ω
p
0 ) ,

σ2
h,i ∼ Γ−1

(
νhi0 ,Ψhi

0

)
,

h0 ∼ N (b0,B0) .

4.9.1 Stochastic volatility VAR estimation

To estimate the SV-VARmodel, we describe a Gibbs sampler below. The model parameters β,p,σ2
h,h0,

and the states are the log-volatility hi,1:T = (hi1, ..., hiT )>. Hence, we consider a 5-block Gibbs sampler.
The two key steps are sampling a and h = (h>1,1:T , ...,h

>
n,1:T )>.

Begin with the sample of p, the lower triangular elements of P. First observe that given y and β,
u = y−Xβ is known. Then, we rewrite the model as a system of regressions in which uit is regressed on
the negative values of u1,t, ..., u(i−1),t for i = 2, ..., n and pi1, ..., pi(i−1) are the corresponding regression
coefficients. If we can rewrite the model this way, then we can apply standard linear regression results
to sample p.

Note:

Put =



1 0 0 · · · 0

p21 1 0 · · · 0

p31 p32 1 · · · 0
...

...
...

. . .
...

pg1 pg2 · · · pg(g−1) 1





u1,t

u2,t

u3,t

...
un,t


=



u1,t

u2,t + p21u1,t

u3,t + p31u1,t + p32u2,t

...
un,t +

∑n−1
j=1 pnjuj,t



=



u1,t

u2,t

u3,t

...
un,t


−



0 0 0 0 0 · · · · · · 0

−u1,t 0 0 0 0 · · · · · ·
...

0 −u1,t −u2,t 0 0 · · · · · · 0
...

. . . . . . · · · 0

0 · · · 0 · · · 0 −u1,t · · · −ut,(n−1)





p21

p31

p32

...
pn(n−1)


⇔ Put = ut −Θtp.
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Noting that |Σt| = |Λt|, we can write the likelihood implied by (87) as

f(y|β,p,h) ∝

(
T∏
t=1

|Λt|−1/2

)
exp

{
−1

2

T∑
t=1

u>t (P>Λ−1
t P)ut

}

=

(
T∏
t=1

|Λt|−1/2

)
exp

{
−1

2

T∑
t=1

(Put)
>Λ−1

t Put

}

=

(
T∏
t=1

|Λt|−1/2

)
exp

{
−1

2

T∑
t=1

(ut −Θtp)>Λ−1
t (ut −Θtp)

}
. (88)

In other words, the likelihood is the same as that implied by the regression

ut = Θtp + ηt, ηt ∼ N (0,Λt) .

Therefore stacking these over t = 1, ..., T we get:

u = Θp + η, η ∼ N (0,Λ) ,

with
Λ = diag (Λ1, ...,ΛT ) .

Given the prior p ∼ N (p0,Ω
p
0 ), it then follows that

p|y,β,h ∼ N (p̄, Ω̄
p
), (89)

where

p̄ = Ω̄
p
(
Ωp

0 p0 + Θ>Σ̃
−1

u
)
,

Ω̄
p

= Ωp
0 + Θ−1Λ(Θ−1)>.

To sample the log-volatility, h, we first compute the orthogonalised innovations:

ũt = P(yt −Xtβ), t = 1, ..., T,

=⇒ E [ũt|p,h,β] = 0,

Var (ũt|p,h,β) = P(P>Λ−1
t P)−1P> = Λt,

∴ ũi,t|p,h,β ∼ N (0, exp {hi,t}) . (90)
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The other steps are now standard. For example, to sample β, we rewrite (87) as

y = Xβ + u, u ∼ N (0, Σ̃),

and Σ̃ = diag (Σ1, ...,ΣT ) is a block-diagonal matrix. Together with the prior, β ∼ N (β0,Ω0), we
have

β|y,p,h ∼ N (β̄, Ω̄), (91)

where

β̄ = Ω̄
(
Ω0β0 + X>Σ̃

−1
y
)
,

Ω̄ = Ω0 + X−1Σ̃(X−1)>,

and remember that

Σ̃ = diag (Σ1, ...,ΣT ) ,

Σt = P−1Λt(P
−1)−1.

4.10 Bayesian panel VARs

A panel VAR describes the the evolution of yt,i, the vector of g × 1 endogenous variables of each unit
i ∈ [1, ..., N ], by a system of p-th order VARs. In its most general form, the panel VAR model for unit
i is written as:

yt,i =

N∑
j=1

p∑
k=1

Ak
ij,tyj,t−k + Cijxt + ui,t,
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with

ui,t ∼ N (0,Σii,t),

Σii,t = E
[
ui,tu

>
i,t

]

= E



ui,1,t

ui,2,t
...

ui,g,t


[
ui,1,t ui,2,t · · · ui,g,t

]


=


σ2
i,1,t σi,2,tσi,2,t · · · σi,1,tσi,g,t

σi,2,tσi,1,t σ2
i,2,t · · · σi,2,tσi,g,t

...
...

. . .
...

σi,g,tσi,1,t σi,g,tσi,2,t · · · σ2
i,g,t

 .

ui,t is assumed to be non-autocorrelated, so that E
[
ui,tu

>
i,t

]
= Σii,t, while E

[
ui,tu

>
i,s

]
= O when

t 6= s. Note that in this general setting the variance covariance matrix for the VAR residuals is allowed
be period specific, which implies a general form of heteroskedasticity.

For each variable in unit i, the dynamic equation at period t contains a total of k = Ngp + m

coefficients to estimate, implying q = g(Ngp+m) coefficients to estimate for the whole unit. Stacking
over the N units, the model can be reformulated as

yt =

p∑
k=1

Ak
t yt−k + Ctxt + ut,

= A1
tyt−1 + · · ·+ Ap

tyt−p + Ctxt + ut, (92)
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or 
y1,t

y2,t

...
yN,t


︸ ︷︷ ︸
Ng×1

=


A

(1)
11,t A

(1)
12,t · · · A

(1)
1N,t

A
(1)
21,t A

(1)
22,t · · · A

(1)
2N,t

...
...

. . .
...

A
(1)
N1,t A

(1)
N2,t · · · A

(1)
NN,t


︸ ︷︷ ︸

Ng×Ng


y1,t−1

y2,t−1

...
yN,t−1

+ · · ·

+


A

(p)
11,t A

(p)
12,t · · · A

(p)
1N,t

A
(p)
21,t A

(p)
22,t · · · A

(p)
2N,t

...
...

. . .
...

A
(p)
N1,t A

(p)
N2,t · · · A

(p)
NN,t




y1,t−p

y2,t−p
...

yN,t−p

+


C1,t

C2,t

...
CN,t


︸ ︷︷ ︸
Ng×m

xt +


u1,t

u2,t

...
uN,t


︸ ︷︷ ︸
Ng×1

.

The vector of residuals, ut, has the following properties:

ut ∼ N (0,Σt),

with

Σt = E
[
utu

>
t

]

= E




u1,t

u2,t

...
uN,t


[
u1,t u2,t · · · uN,t

]


=


Σ11,t Σ12,t · · · Σ1N,t

Σ21,t Σ22,t · · · Σ2N,t

...
...

. . .
...

ΣN1,t ΣN2,t · · · ΣNN,t


︸ ︷︷ ︸

Ng×Ng

.

The assumption of absence of autocorrelation is then extended to the whole model: E
[
utu

>
t

]
= Σt

and E
[
utu

>
s

]
= O, t 6= s. Now there are h = Nq = Ng(Ngp+m) coefficients to estimate.

This is the most general form of the panel VAR model. Under this form, it is characterised by four
properties:

1. Dynamic interdependencies: the dynamic behaviour of each unit is determined by lagged values
of itself, but also by lagged values of all the other endogenous variables of all other units. In
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other words, Ak
ij,t 6= O when i 6= j.

2. Static interdependencies: the ui,t are allowed to be correlated across units. That is, in general,
Σij,t 6= O when i 6= j.

3. Cross-subsectional heterogeneity: the VAR coefficients and residual variances are allowed to be
unit-specific.

4. Dynamic heterogeneity: the VAR coefficients and the residual variance covariance matrix are
allowed to be period specific. In other words, Ak

ij,t 6= Ak
ij,s and Σij,t 6= Σij,s when t 6= s.

In practice, this general form may be too complex to yield accurate estimates, as it consumes many
degrees of freedom. If one has legitimate reasons to assume that some of the properties will not hold,
better estimates can be obtained by relaxing them and opt for less degrees of freedom consuming
procedures.

4.10.1 Bayesian Panel VAR examples

Suppose we had N = 2 (US and EU), g = 2 variables (GDP and interest rates), over p = 1 lag, and
m = 1 exogenous variable (some constant), then we could write:

yUSt

rUSt

yEUt

rEUt

 =


β11,t β12,t β13,t β14,t

β21,t β22,t β23,t β24,t

β31,t β32,t β33,t β34,t

β41,t β42,t β43,t β44,t



yUSt−1

rUSt−1

yEUt−1

rEUt−1

+


c11,t

c21,t

c31,t

c41,t

x1,t +


uUS1,t

uUS2,t

uEU1,t

uEU2,t

 ,

with

Σt =

[
ΣUS,EU,t ΣUS,US,t

ΣEU,US,t ΣEU,EU,t

]

=


σ11,t σ12,t σ13,t σ14,t

σ21,t σ22,t σ23,t σ24,t

σ31,t σ32,t σ33,t σ34,t

σ41,t σ42,t σ43,t σ44,t

 ,

and the four properties are:

1. Dynamic interdependencies (red terms): Variables are allowed to be determined by lagged values
of other variables, e.g., β11,t 6= 0.

2. Static interdependencies (green terms): Residuals are allowed to be correlated across countries,
e.g., σ13,t 6= 0.
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3. Cross-subsectional heterogeneity (blue terms): the VAR coefficients and residual variances are
allowed to be country specific, e.g., β11,t 6= β33,t.

4. Dynamic heterogeneity: the VAR coefficients and the residual variance covariance matrix are
allowed to be time varying. In other words, Ak

ij,t 6= Ak
ij,s and Σij,t 6= Σij,s when t 6= s.

As mentioned, integrating all of these 4 properties is often not optimal. We need to reduce the number
of properties, or to find a way to simplify the problem.

Case 1: No property satisfied
yUSt

rUSt

yEUt

rEUt

 =


β11 β12 0 0

β21 β22 0 0

0 0 β11 β12

0 0 β21 β22



yUSt−1

rUSt−1

yEUt−1

rEUt−1

+


c11

c21

c31

c41

x1,t +


uUSt

uUSt

uEUt

uEUt

 , (93)

with

Σt =


σ11 σ12 0 0

σ21 σ22 0 0

0 0 σ11 σ12

0 0 σ21 σ22

 . (94)

Note that the coefficients and variance covariance terms are not longer time varying, the coefficient
and variance covariance matrices are now a diagonal block matrix, and that the error terms within
each country is the same across variables.

Case 2: Cross-section heterogeneity
yUSt

rUSt

yEUt

rEUt

 =


β11 β12 0 0

β21 β22 0 0

0 0 β33 β34

0 0 β43 β44



yUSt−1

rUSt−1

yEUt−1

rEUt−1

+


c11

c21

c31

c41

x1,t +


uUSt

uUSt

uEUt

uEUt

 , (95)

with

Σt =


σ11 σ12 0 0

σ21 σ22 0 0

0 0 σ33 σ34

0 0 σ43 σ44

 . (96)

Notice that the the block diagonal matrices now feature different elements.
Case 3: Dynamic and static interdependencies
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
yUSt

rUSt

yEUt

rEUt

 =


β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44



yUSt−1

rUSt−1

yEUt−1

rEUt−1

+


c11

c21

c31

c41

x1,t +


uUSt

uUSt

uEUt

uEUt

 , (97)

with

Σt =


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 . (98)

As the name suggests, we now have cross-period interdependencies.
Case 4: Dynamic heterogeneity

yUSt

rUSt

yEUt

rEUt

 =


β11,t β12,t β13,t β14,t

β21,t β22,t β23,t β24,t

β31,t β32,t β33,t β34,t

β41,t β42,t β43,t β44,t



yUSt−1

rUSt−1

yEUt−1

rEUt−1

+


c11,t

c21,t

c31,t

c41,t

x1,t +


uUSt

uUSt

uEUt

uEUt

 , (99)

with

Σt =


σ11,t σ12,t σ13,t σ14,t

σ21,t σ22,t σ23,t σ24,t

σ31,t σ32,t σ33,t σ34,t

σ41,t σ42,t σ43,t σ44,t

 . (100)
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