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Dynamic Optimisation
1 Optimal Control

1.1
If left undisturbed, a population of s fish in a lake grows at the rate

ṡ = as− bs2.

Fish can be consumed at a rate x which yields instantaneous utility to the local community
of lnx and reduces the fish growth rate accordingly:

ṡ = as− bs2 − x.

Future utility is discounted at the constant rate ρ, where ρ < a. Through the use of a
phase diagram (or otherwise) describe the optimal consumption plan starting from the
initial stock of fish s(0) = a/b. What happens if ρ > a?

The Hamiltonian for this problem is:

H = u(xt) + λt(ast − bs2t − xt),

where we know ρ < a and s0 = a/b. Our first order conditions (FOCs) for this problem
are the above Hamiltonian derived wrt the control variable, x, and state variable, s:

∂H
∂xt

= u′(xt)− λt = 0, (1)

∂H
∂st

= aλt − 2bλtst = ρλt − λ̇, (2)

where the dot notation denotes a variable’s derivative wrt time. i.e. λ̇t = dλt/dt. From
our FOCs, we take the expression for λt from (1) and take its derivative wrt time:

λt = u′(xt),

=⇒ λ̇ = u′′(xt)ẋ.

We then use the above expression to get an expression for ẋt, and substitute our value
for λ̇ from 2:

ẋ =
λ̇

u′′(xt)

=
λtρ− λta+ 2λtbst

u′′(xt)
=
λt(ρ− a+ 2bst)

u′′(xt)

ẋ =
u′(xt)(ρ− a+ 2bst)

u′′(xt)
.
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This gives us two transition equations:

ẋ =
u′(xt)

u′′(xt)
(ρ− a+ 2bst) = 0,

ṡ = ast − bs2t − xt = 0.

Since u(xt) = lnxt, our transition equations are:

ẋ = xt(a− ρ− 2bst) = 0,

ṡ = ast − bs2t − xt = 0.

Given u(xt) = lnxt, we can clearly see that the Hamiltonian is concave in both xt and
st. Moreover,

∂H
∂xt

=
1

xt
− λt,

∂2H
∂x2t

= − 1

x2t
,

so the value of xt that maximises H is 1/λt. We can see the transition dynamics of the
two transition equations by plotting a phase diagram:

Figure 1: Phase diagram for Question 1

Given that we start at s0 = a/b, our consumption of the fish stock must be sufficiently
high so that we hit the saddle path given by the blue arrows. If our initial consumption
of fish is insufficient, then we drift back to the starting point of st = a/b and xt = 0.
Suppose that we do arrive onto the saddle path, then our steady state consumption of fish
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is given by x∗t =
a−ρ
2b , which is attained by solving for ẋt = 0. We can see that this is less

than the maximum value of the fish stock due to the fact that we discount by discount
factor ρ. For curiosity’s sake, differentiating ṡt and solving gives the max point as st = a

2b .

If ρ > a, then our impatience will lead us to consume the entire stock of fish such
that the steady state level of fish consumption and fish stock per period will be at the
origin.

Figure 2: Phase diagram for Question 1 Part 2

1.2
The rate at which natural gas is pumped from a deposit is given by

ṡ = −αsx,

where s(t) is the amount of gas remaining in the deposit, x(t) is the input of pumping
energy, and α is a constant. Let P denote the (constant) price of gas and c(x) be a strictly
convex function denoting the cost of pumping. Find the energy input x(t) that maximises∫ T

0

{pαs(t)x(t)− c(x(t))} dt,

subject to s(0) = s0, s(T ) = sT , and ṡ = −αsx.
(Hint: First show that ẋ = 0)

The problem is to choose x(t) to

max

∫ T

0

{Pαs(t)x(t)− c(x(t)) + λt[−αs(t)x(t)− ṡ]} dt

or, equivalently

max

∫ T

0

{
Pαs(t)x(t)− c(x(t)) + λt[−αs(t)x(t)] + s(t)λ̇

}
dt.
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Note: writing the Hamiltonian as

H = Pαs(t)x(t)− c(x(t)) + λt(αs(t)x(t)),

yields the exact same results as those derived below.
Taking the derivatives wrt x and s yields our FOCs:

FOCx :Pαs(t)− c′(x(t))− λtαs(t) = 0 (3)

FOCs :Pαx(t)− λαx(t) + λ̇ = 0 (4)

From (3) we have
c′(x(t)) = (P − λt)αs(t),

and taking the derivative wrt t yields

c′′(x(t))ẋ = (P − λt)αṡ− λ̇αs(t)

=⇒ c′′(x(t))ẋ =
c′(x(t))ṡ

s(t)
− λ̇αs(t). (5)

From (4) we have

−λ̇ = Pαx(t)− λtαx(t)
= (P − λt)αx(t)

=⇒ −λ̇ =
c′(x(t))x(t)

s(t)
. (6)

We can then substitute (6) into (5) (be careful with the ’−’ sign):

c′′(x(t))ẋ =
c′(x(t))ṡ

s(t)
+
c′(x(t))x(t)

s(t)
αs(t)

=
c′(x(t))ṡ

s(t)
+ αc′(x(t))x(t)

= c′(x(t))

[
ṡ

s(t)
+ αx(t)

]
.

We can then use the law of motion

ṡ = −αs(t)x(t),

to get

c′′(x(t))ẋ = c′(x(t))

[
−αs(t)x(t)

s(t)
+ αx(t)

]
=⇒ ẋ =

c′(x(t))

c′′(x(t))
[αx(t)− αx(t)] = 0.
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Since ẋ = 0, this implies that x(t) is some constant in each period, say k. So

ṡ = −αs(t)k
s(t) = s0 exp(−αkt)
sT = s0 exp(−αkT )

=⇒ s0
sT

= exp(αkT )

ln

(
s0
sT

)
= αkT

=⇒ k =
1

αT
ln

(
s0
sT

)
.

With our initial and terminal conditions we can see that when t = 0, s(t) = s0, and when
t = T , s(t) = sT ≈ 0 if T is sufficiently large.

1.3
The price of a mineral resource is constant and equal to P . The instantaneous cost of
extraction is c(x) = Ax2 where x(t) is the rate of extraction. The initial stock is s0. The
owner of the resource has a discount rate ρ and wishes to maximise∫ ∞

0

exp(−ρt)
{
Px(t)−Ax(t)2

}
dt,

subject to s(0) = s0, s(t) ≥ 0, and ṡ = −x(t).
The problem is to choose x(t) to

max

∫ ∞
0

exp(−ρt)
{
Px(t)−Ax(t)2 + λt(−x(t)− ṡ)

}
dt,

or equivalently,

max

∫ ∞
0

exp(−ρt)
{
Px(t)−Ax(t)2 + λt(−x(t)) + s(t)(λ̇− ρλt)

}
dt.

and the first order conditions are:

FOCx :P − 2Ax(t)− λt = 0 (7)

FOCs :λ̇− ρλt = 0. (8)

From 7:

λt = P − 2Ax(t)

=⇒ dλt
dt

= λ̇ = −2Aẋ

and from 8:

λ̇ = ρλt

=⇒ −2Aẋ = ρλt

−2Aẋ = ρ(P − 2Ax(t)).
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To get an expression for x(t) without ẋ we must rearrange and integrate:

2Aẋ

P − 2Ax(t)
= −ρ∫

2Aẋ

P − 2Ax(t)
dt =

∫
−ρ dt

2A

∫
dx

P − 2Ax(t)
= −ρ

∫
dt

− ln(P − 2Ax(t)) = −ρt− C
ln(P − 2Ax(t)) = ρt+ C,

take anti-logs:

P − 2Ax(t) = K exp(ρt)

−2Ax(t) = K exp(ρt)− P

x(t) =
1

2A
(P −K exp(ρt)).

1.3.1

Show that the optimal policy is to extract the resource completely in some finite time T .
Since K is positive there must be a time T such that P−K exp(ρt) = 0. i.e. x(T ) = 0;

further, since x(t) cannot be negative, it must be the case that x(t) = 0 ∀t > T . it cannot
be optimal to abandon extraction when s(t) > 0, so s(T ) = 0.

1.3.2

Obtain an explicit expression for x(t) in terms of this time T (rather than s0).
K exp(ρt) = P implies that K = P exp(−ρT ), and so

x(t) =
P

2A
[1− exp(−ρ(T − t))] .

1.3.3

Show that T satisfies
P

2A

[
T − 1

ρ
(1− exp(−ρT )

]
= s0.

What happens to the extraction rate as s0 →∞?
Using the LOM that ṡ = −x(t):

ṡ = − P

2A
[1− exp(−ρ(T − t))]∫

ṡ dt = −
∫

P

2A
[1− exp(−ρ(T − t))]

s(t) = − P

2A

[
t− 1

ρ
exp(−ρ(T − t))

]
+K ′,
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then suppose

0 = s(T ) = − P

2A

[
t− 1

ρ
exp(−ρ(T − t))

]
+K ′

0 = − P

2A

[
T − 1

ρ

]
+K ′

=⇒ K ′ =
P

2A

[
T − 1

ρ

]
,

substituting this back into s(t):

s(t) = − P

2A

[
t− 1

ρ
exp(−ρ(T − t))

]
+

P

2A

[
T − 1

ρ

]
=

P

2A

[
T − 1

ρ
− t+ 1

ρ
exp(−ρ(T − t))

]
,

and so
s0 = s(0) =

P

2A

[
T − 1

ρ
+

1

ρ
exp(−ρT )

]
.

Now, take derivatives
ds0
dT

=
P

2A
[1− exp(−ρT )] > 0,

and
dx(t)

dT
=

P

2A
ρ exp(−ρ(T − t)) > 0,

so s0 ↑ =⇒ T ↑, and T ↑ =⇒ x(t) ↑ – the extraction rate is approximately linear.
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2 Dynamic Programming

2.1 Consumption-investment with logarithmic utility & Cobb-
Douglas production

Consider an agent with utility function u(x) = lnx, and a capital stock s. When she
consumes x this period she invests the remained s − x in production and at the start of
the next period this has become f(s−x) where f(y) = Ayα with 0 < α ≤ 1. The Bellman
equation for this problem is

V (s) = max
0≤x≤s

{u(x) + δV (f(s− x))} .

Show that V (s) = B ln s+C satisfies the Bellman equation for some constants B and C.
Show that the associated plan is to consume a fixed fraction of the stock each period.
Note: Setting A = 1+r, the gross interest rate, and α = 1 gives us a consumption-savings
problem.

Given that u(x) = lnx and we have capital stock s which grows by the following law
of motion:

s′ = A(s− x)α.

The value function for our problem is then:

V (s) = max {u(x) + δV (A(s− x)α)} .

Since our utility is a log function, we can guess a form for V (s) as B ln(A(s− x)α) + C.
So our value function becomes:

max {lnx+ δB lnA+ δBα ln(s− x) + δC} .

Differentiating our value function gives the following FOC:

1

x
− δBα

s− x
= 0,

which then gives us

s− x = δBαx

=⇒ x =
s

1 + δBα
.
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So the Bellman equation for this problem is:

V (s) = max
s

{
ln

s

1 + δBα
+ δBα ln (s− x) + δC

}
= max

{
ln

s

1 + δBα
+ δBα ln (δBαx) + δC

}
= max

{
ln

s

1 + δBα
+ δBα ln

(
δBαs

1 + δBα

)
+ δC

}
= max

{
ln

s

1 + δBα
+ δBα ln

(
δBαs

1 + δBα

)
+ δC

}
= max

{
ln s− ln(1 + δBα) + δBα ln

(
δBα

1 + δBα

)
+ δBα ln s+ δC

}

= max

[1 + δBα]︸ ︷︷ ︸
B

ln s+ δBα ln

(
δBα

1 + δBα

)
− ln(1− δBα) + δC︸ ︷︷ ︸
C

 .

So, our solution is of the form B ln s+ C. We know that

x =
s

1 + δBα
,

which implies that

B = 1 + δBα =⇒ B =
1

1− δα
,

so
x =

s

1 + δαB
=

s

B
= (1− δα)s.

Thus, our optimal consumption per period is x∗ = (1 − δα)s, and since s′ = s − x =⇒
s′ = δαs.

2.2 ’Cake-eating’ with CRRA utility

Consider an agent with utility function u(x) = x1−R−1
1−R , and a capital stock s. When she

consumes x this period she saves the remainder s − x and has this at the start of next
period. Show that V (s) = Bs1−R−C

1−R satisfies the Bellman equation for some constants B
and C. Show that the associated plan is again to consume a fixed fraction of the stock
each period.
Note: Simultaneously setting R = 1 in the above exercise and A = 1, α = 1 in the previous
one yields identical problems – check if the solutions coincide.

Given the utility function

u(x) =
x1−R − 1

1−R
,

and the law of motion for our stock of cake is:

s′ = s− x,
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our value function is the following:

V (s) = max
x

{
x1−R − 1

1−R
+ δV (s− x)

}
.

We wish to check the utility function is of CRRA form, so we try a solution to our value
function of the following:

V (s) =
Bs1−R − C

1−R
,

so our functional equation becomes:

Bs1−R − C
1−R︸ ︷︷ ︸
V (s)

= max


(s− s′)1−R − 1

1−R︸ ︷︷ ︸
u(x)

+ δ

[
Bs′1−R − C

1−R

]
︸ ︷︷ ︸

V (s′)

 . (9)

We know1 from the Euler equation that:

V ′(s) = u′(x) = βV ′(s′),

which implies

s′R =
δsR

B

∴ s′ =

(
β

B

) 1
R

s.

We can substitute this back into (9) to get:

Bs1−R − C
1−R

=

(
s−

(
δ
B

)1/R
s
)1−R

− 1

1−R
+ δ

B
((

δ
B

)1/R
s
)1−R

− C

1−R


Bs1−R − C

1−R
=
s1−R −

(
δ
B

)1/R
s1−R − 1

1−R
+
δB
((

δ
B

)1/R
s
)1−R

− δC

1−R

Bs1−R − s1−R +
(
δ
B

) 1−R
R s1−R − δB

(
δ
B

) 1−R
R s1−R

1−R
=

C

1−R
− 1

1−R
− δC

1−R[
B − 1 +

(
δ

B

) 1−R
R

− δB
(
δ

B

) 1−R
R

]
︸ ︷︷ ︸

B

s1−R

1−R
=
C − 1− δC

1−R︸ ︷︷ ︸
C

.

Thus verifying that our solution to the problem is of the form B s1−R

1−R + C.

1See 2.4.
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We can get an expression for our ideal consumption of x since e know from our Euler
equation conditions that

B

sR
=

1

xR

=⇒ x∗ =

(
1

B

)1/R

s.

2.3 ’Cake-eating’ with linear utility
What are the value function and the optimal plan for the cake-eating problem for an agent
with linear utility function u(x) = x? What if u(x) = x − 1? Does the latter solution
coincide with that from the previous problem when R→ 0?

When our utility function is linear such that u(x) = x, our lifetime discounted utility
is given as:

max
x

∞∑
t=1

β1−txt.

We can clearly see that if 0 < β < 1, then the consumer will choose to consume the
entirety of her cake in the first period, as the utility she gets from consumption will be
discounted by β in the next period. If β = 1, then it doesn’t matter when she consumes
her cake, nor does it matter how much of the cake she consumes. The value function is
thus:

V (s) = s.

If the utility function is of the form u(x) = x− 1, then the same conditions apply except
for when β = 1 where she will consume all of her cake in the first period. She does so
because she loses 1 util per period for which cake remains. The value function is thus:

V (s) = s− 1

1− β
.

2.4 Consumption-savings with CRRA utility & a stochastic in-
terest rate

Consider an agent with utility function u(x) = x1−R−1
1−R , and savings s. When she con-

sumes x this period she saves the remainder s−x and starts next period with (1+r)(s−x)
where r is a random variable, IID over time. Show that the solution to the Bellman equa-
tion and the associated plan are qualitatively the same as in the deterministic case, but
the effect of the uncertainty makes the agent bring consumption forward if 0 < R < 1,
and defer it if R > 1.
Hint: For the last part, Jensen’s inequality might be useful.

The value function for this problem is:

V (s) = max
0≤x<s

{u(x) + βEt [V (s′)]} ,

subject to
s′ = (1 + r′)(s− x).
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Therefore, taking the derivative of V (s) wrt x yields the following FOC:

u′(x) = βE [V ′(s′)(1 + r′)] .

Then, take the total derivative of V (s):

V ′(s)ds = u′(x)dx+ βE [V ′(s′)(1 + r′)(ds− dx)]
= (u′(x)dx− βE [V ′(s′)(1 + r′)]) dx︸ ︷︷ ︸

=0 from FOC

+ βE [V ′(s′)(1 + r′)] ds

∴ V ′(s) = βE [V ′(s′)(1 + r′)] = u′(x).

Which gives the consumption Euler equation:

u′(x) = βE [u′(x′)(1 + r′)]

=⇒ u′(x)

E[u′(x′)]
= βE[1 + r′].

Since we have CRRA utility:

u(x) =
x1−R − 1

1−R

=⇒ u′(x) =
1

xR
.

Thus we have the following for our Euler equation:

E
[
x′R
]

xR
= βE[1 + r′].

For the deterministic case, most of our analysis is analogous to the stochastic case. Start
with our value function:

V (s) = max
0≤x<s

{u(x) + βE[V (s′)]} ,

subject to
s′ = (1 +R)(s− x).

Taking the derivative of the value function wrt x yields the following FOC:

u′(x) = β(1 + r).

Then, take the total derivative of the value function:

V ′(s)ds = u′(x)dx+ βE [V ′(s′)(1 + r)(ds− dx)]
= u′(x)dx− βE [V ′(s′)(1 + r)] dx+ βE [V ′(s′)(1 + r)] ds

= u′(x)dx− β(1 + r)dx︸ ︷︷ ︸
=0

+ β(1 + r)2(s− x)ds

∴ V ′(s) = β(1 + r)(s− x)
=⇒ V ′(s) = u′(x).
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This gives our consumption Euler equation:

u′(x)

u′(x′)
= β(1 + r)

=⇒
(
x′

x

)R
= β(1 + r),

as we have CRRA utility.

For the stochastic case, we have per period consumption as

x =

[
E[x′R]

βE[1 + r′]

]1/R
,

and for the deterministic case as

x =
x′

(β(1 + r))
1/R

.

These expressions are qualitatively identical. However since the numerator on the RHS
of the stochastic expression is an expected utility, we can see that for 0 < R < 1, the
individual will choose to bring her consumption forward. If R > 1, then she will choose
to smooth her consumption into the future.

Note: Jensen’s equality states:
E[g(r)] ≤ g(E[r]),

thus
E[x′R] ≤ E[x′]R
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