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1 Aggregate Demand and the (New) Keynesian Cross

In what follows, I stick to the derivation of Bilbiie – but I make some changes to notation and timing to

keep things consistent with my other notes.

Think back to your undergraduate macroeconomics courses, in particular to the Keynesian cross –

remember the discussion about inventories, leakages, injections, and so on. Let’s postulate a consumption

function or a planned expenditure (PE) curve:

C = C(Y
+
, r
−

),

where consumption is increasing in income (Y ) and decreasing in the real interest rate (r). Thus we can

write CY ∈ (0, 1) and Cr < 0. With an equilibrium condition, the economy-wide resource constraint

(ERC), we then have that consumption is equal to income.

As set out in Bilbiie (2020): The slope of the PE curve is the marginal propensity to consume (MPC)

out of income, i.e., CY . Meanwhile, a cut in real interest rates leads to an increase in consumption, i.e.,

Cr, which is the autonomous expenditure increase. But there is an additional increase – the equilibrium

level of consumption and output increase. This is the famous Keynesian multiplier effect:

CR
(
1 + CY + C2

Y + ...
)
.

The initial increase in consumption and income leads to a second round increase in consumption by the

MPC. This leads to an increase in income, and a third round increase in consumption by the MPC. So

on and so forth. The equilibrium increase in consumption and income is therefore

dC = dY =
Cr

1− CY
d(−r),

∗These notes are based on the amazing work of Bilbiie (2008, 2020, 2021) – all of which are recommended reads.
†PhD Candidate, Department of Economics, Management and Quantitative Methods, Via Conservatorio 7, 20122 Milano,

Italy. Email: david.murakami@unimi.it
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where Cr/(1− CY ) is the multiplier.

Figure 1 is a plot of Bilbiie’s New Keynesian cross, which embeds the discussion above and the

mechanism of the classical Keynesian cross. Denote the MPC as CY = ω, Ω as the multiplier (equilibrium)

increase of an interest rate cut, the autonomous expenditure increase Cr = ΩD, and the indirect or residual

equilibrium increase as ΩI .

Bilbiie assumes an environment of sticky prices and whereby output is demand-determined – so

abstract from any supply side factors. The real interest rate is targeted by the central bank so that prices

are fixed (Bilbiie, 2008). In other words, nominal interest rates are set to neutralise changes in expected

inflation in the Fisher equation,

R̂t = Etπ̂t+1 + r̂t,

with r̂t = r̄t which is what we mean by the real rate being targeted.

ŷt

Ĉt

ERC: Ĉt = ŷt

PE: ΩI = Ω− ΩD

PE: Ĉt(ŷt, r̂t, Ĝt)

ω

ΩD

ΩI

Ω

Figure 1: The New Keynesian Cross

A few more remarks about Figure 1 to familiarise the notation: The key equation that Bilbiie derives

in his analysis is consumption or aggregate demand (AD) as a function of current income for a given real

interest rate,

Ĉt = ωŷt − ΩD r̂t. (1)

To restate things, ω is the slope of PE and is the aggregate MPC. ΩD is the shift of the PE curve, and is
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the autonomous expenditure change when the interest rate is cut. Without capital or inventories, this is

simply intertemporal substitution: r̂t ↓ with incomes given, agents want to bring consumption forward.

Without assets to liquidate or “disinvest” their income adjusts to deliver equilibrium. Ω is the Keynesian

multiplier – the equilibrium effect of a cut in interest rates on AD and income, given as

Ω =
ΩD

1− ω
.

So a reduction in the interest rate results in PE curve (with slope ω) shifting upwards by ΩD, and

equilibrium moves from the origin, Ĉt = ŷt = 0, to Ω.

1.1 The New Keynesian Cross with RANK

Consider an environment with full information rational expectations (FIRE), competitive labour markets,

and complete financial markets. In such a setup, an agent would maximise his or her lifetime utility,

max Et

∞∑
s=0

βsu(Cit+s, L
i
t+s),

subject to their flow nominal budget constraint,

PtC
i
t +Ait + Vtψ

i
t ≤WtL

i
t +Bit−1 + ψit−1(Vt + PtDt),

where Ait is the agent’s nominal end of period t portfolio of all state-contingent assets (except equity),

Bit−1 is the start of period wealth, and ψit are equity held by the agent.

Assuming a no-arbitrage condition implies that there exists a pricing kernel or stochastic discount

factor (SDF), Λit,t+1, such that:

Ait
Pt

= EtΛ
i
t,t+1

Bit
Pt+1

,

Vt
Pt

= EtΛ
i
t,t+1

(
Vt+1

Pt+1
+Dt+1

)
,

and whereby the gross real interest rate is pinned down by

1

rt
= EtΛ

i
t,t+1. (2)

With a no-arbitrage condition and the ability for agents to accumulate wealth, we assume that agents

hold a constant fraction of shares (i.e., we have no trade such that ψit = ψi,∀t). Then, define the period

income for an agent as

Y it ≡ ψiDt +
Wt

Pt
Lit.
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With these assumptions, we can then rewrite the intertemporal budget constraint as the following:

Et

∞∑
s=0

Λit,t+sC
i
t+s ≤ Et

∞∑
s=0

Λit,t+sY
i
t+s. (3)

Obtaining the FOCs by maximising u(·) gives us an expression for the Euler equation,

βEt
uC(Cit+1)

uC(Cit)
= EtΛ

i
t,t+1.

Putting things together, we have the Euler equation, that the transversality condition holds,

lim
s→∞

EtΛ
i
t,t+sA

i
t+s = lim

s→∞
EtΛ

i
t,t+sVt+s = 0,

and that the budget constraint (either the flow or the intertemporal budget constraint) binds with equality.

Substitute the definition of the gross real rate from the no-arbitrage condition (2) into the Euler equation

to get the following familiar expression,

1

Rt
= βEt

uC(Cit+1)

uC(Cit)
. (4)

Next, we need to do some log-linearisation. Start off by writing (3) as

Et

∞∑
s=0

βs
(

Λ̂it,t+s + Ĉit+s

)
= Et

∞∑
s=0

βs
(

Λ̂it,t+s + Ŷ it+s

)
. (5)

To get this, first note that we assume standard constant relative risk aversion (CRRA) preferences:

u
(
Cit , L

i
t

)
=

(Cit)
1−σ

1− σ
− ϕ0

(Lit)
1+ϕ

1 + ϕ
, (6)

where σ is the coefficient of relative risk aversion given by σ = −uCC

uC
C (the “curvature of consumption”),

and ϕ is the inverse-Frisch elasticity of labour supply. Thus we have uC = C−σ (and uCC = −σ/C1+σ),

and we can write:

EtΛ̂
i
t,t+s = s lnβ + Et lnuC

(
Cit+s

)
− lnuC

(
Cit
)
− s lnβ

= σ
(
lnCit − Et lnCit+s

)
= σ

(
Ĉit − EtĈ

i
t+s

)
.

(7)

Additionally, use

−r̂t = EtΛ̂t,t+1
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to write

Λ̂t,t+s = Λ̂t,t+1 + Λ̂t+1,t+2 + ...+ Λ̂t+s−1,t+s

= −
∞∑
s=0

r̂t+s

= −
s∑

k=0

r̂t+k.

(8)

Using these, we can then write (7) as

Ĉit = EtĈ
i
t+1 −

1

σ
EtΛ̂

i
t,t+1. (9)

Log-linearising (3) and substituting in (9) gives (5).1 Then, add Et
∑∞
s=0

(
σ−1 − 1

)
Λ̂it,t+s to the LHS

and RHS, and do a bit of algebra:

Et

∞∑
s=0

βs
[
Λ̂it,t+s + Ĉit+s +

(
1

σ
− 1

)
Λ̂it,t+s

]
= Et

∞∑
s=0

βs
[
Λ̂it,t+s + Ŷ it+s +

(
1

σ
− 1

)
Λ̂it,t+s

]

Et

∞∑
s=0

βsĈit+s +
1

σ
Et

∞∑
s=0

βsΛ̂it,t+s =
1

σ
Et

∞∑
s=0

βsΛ̂it,t+s + Et

∞∑
s=0

βsŶ it+s

Et

∞∑
s=0

βsĈit+s +
1

σ
Et

∞∑
s=0

βsσ
(
Ĉit − Ĉit+s

)
= Et

∞∑
s=0

βsŶ it+s −
1

σ
Et

∞∑
s=0

βsr̂t+s

∞∑
s=0

βsĈit = Et

∞∑
s=0

βsŶ it+s +
1

σ

(
0− Et

∞∑
s=1

βs
s∑

k=0

r̂t+k

)
1

1− β
Ĉit = Et

∞∑
s=0

βsŶ it+s −
β

σ(1− β)
Et

∞∑
s=0

βsr̂t+s,

to then get

Ĉit = (1− β)Et

∞∑
s=0

βsŶ it+s −
β

σ
Et

∞∑
s=0

βsr̂it+s.

To write this recursively, first start out by writing

Ĉit = (1− β)

(
Ŷ it + Et

∞∑
s=1

βsŶ it+s

)
− β

σ

(
r̂t + E

∞∑
s=1

βsr̂t+s

)
,

and define

βĈit+1 = (1− β)Et

∞∑
s=0

βs+1Ŷ it+s+1 −
β

σ
Et

∞∑
s=0

βs+1r̂t+s+1.

1. Also use the fact that in steady state Λi
t,t+s|s=0 = 1 and Λi

t,t+s = βs.
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Putting things together, you can then write the consumption Euler equation as

Ĉit = (1− β)Ŷ it −
β

σ
r̂t + βĈit+1. (10)

What this equation is saying is that 1−β is the MPC from a transitory income increase, β is the marginal

propensity to save. As Bilbiie states: even though there are no assets to save in, shifts in savings through

substitution effects need to be accompanied by compensating income effect shifts in order to have zero

equilibrium saving which changes equilibrium income.

We can simplify the above Euler equation further by imposing the market clearing condition:

Ĉit = ŷit ≡ Ŷ it − T̂ it ,

where T̂ it are taxes levied by the government. Substituting this into the consumption Euler equation (10)

we get

Ĉit = EtĈ
i
t+1 −

1

σ
r̂t. (11)

We are now ready to obtain an expression like (1) and plot the NK cross for a RANK model. First,

get the Keynesian multiplier Ω for a real interest rate cut. We can do this by differentiating Ĉit wrt r̂t –

but how do we deal with the expectation operator? Recall that we are operating with FIRE, and make

the assumption that an interest rate reduction has persistence of ρ. Thus we can write EtĈit+1 = ρĈit .

We then get

Ω ≡ dĈit
d (−r̂t)

=
1

σ(1− ρ)
,

from (11). Then to get the direct effect of the interest rate reduction, ΩD, use (10) and differentiate

holding income fixed:

ΩD ≡
dĈit

d (−r̂t)

∣∣∣∣∣
Ŷ i
t =Ȳ

=
β

σ(1− βρ)
.

Also, recall from your microeconomics lectures that the direct effect can be thought of as the substitution

effect – and is the notation used as in Auclert (2019).2 The indirect effect is simply

ΩI ≡
dĈit

d (−r̂t)

∣∣∣∣∣
r̂it=r̄

= Ω− ΩD =
1

σ(1− ρ)
− β

σ(1− βρ)
=

1− β
σ(1− ρ)(1− βρ)

,

and which can be thought of as the income effect. Alternatively, we can think of the direct and indirect

effects as the partial and general equilibrium effects, respectively. Meanwhile, the MPC is

ω ≡ ΩI
Ω

=
1− β
1− βρ

.

2. Theorem 3.

6



Notes on (T)HANK David Murakami

Finally, assuming that fiscal policy is implemented by Ĝt = T̂t, define the fiscal multiplier as

M =
dŷt

dĜt
= 1⇔ dĈt

dĜt
= 0.

Putting everything together, we can write the RANK Euler equation for the NK cross as

Ĉt = ωŷt − (1− ω)Ωr̂t + (1− ω)(M− 1)Ĝt,

and get to the following:

Proposition (Bilbiie (2020) Proposition 1). In RANK, the MPC ω, autonomous expenditure increase

ΩD, and multiplier Ω (for an interest rate cut of persistence ρ) are

ω =
1− β
1− βρ

; ΩD =
β

σ(1− βρ)
; Ω =

1

σ(1− ρ)
.

Now, we can use the NK cross to assess the RANK model. Consider a transitory monetary policy

shock (ρ = 0), which will clearly show the deficiencies of RANK. The general equilibrium effect of this

is Ω = σ−1, which according to a long history of macro literature is close to zero (see, for example, Hall

(1988), Campbell and Mankiw (1990), Bilbiie and Straub (2012) and Ascari, Magnusson, and Mavroeidis

(2021)). The second problem – highlighted by Kaplan, Moll, and Violante (2018) – is that the MPC

(share of the indirect effect) becomes ω = 1− β. This is, like the general equilibrium effect, close to zero

for high values of β – an observation in line with declining real interest rates over the past few decades.

Put simply, RANK fails to generate both a general equilibrium and indirect effect of a monetary policy

shock. In fact, even calibrating β = 0.99 and ρ = 0.55, we get an MPC of ω = 1−β
1−βρ = 0.02. Even

setting ρ = 0.9 we only get ω = 0.09, which implies that the PE curve is basically flat. Additionally,

the problems of fiscal policy in RANK models is obvious: the fiscal multiplier on consumption of public

expenditures is 0!

To quote Bilbiie and paraphrase a bit: According to RANK, consumption is almost insensitive to

current income, which contradicts evidence obtained using a wide spectrum of micro and macro data. To

make matters worse, RANK is, paradoxically, not very “general equilibrium” either – almost all the effect

of monetary policy comes from the partial equilibrium (direct) shift of the PE curve! Such considerations

spurred the development of TANK and HANK models.

1.2 TANK Models and the New Keynesian Cross

Now move onto a standard two-agent New Keynesian (TANK) to see how it can address some RANK’s

shortcomings. Assume that there are two types of agents i ∈ {H,S} amongst a unit mass of households.

Proportion λ are “hand-to-mouth” households (i = H) and consume all of their income, and thus do not

participate in asset markets:

CHt = WtL
H
t + THt ,
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where Tit are fiscal transfers to type i households. The remaining 1−λ proportion of households are savers

(i = S). They can save in state-contingent securities as well as equity in monopolistically competitive

firms.3 Thus, they receive both profits and labour income, and their budget constraint is:

CSt +ASt + Vtψ
S
t ≤WtL

S
t +BSt + ψSt−1 (Vt + PtDt) + TSt .

Following the logic we had in Section 1.1, asset markets clear, equity held by savers is ψSt = (1 − λ)−1,

and so the budget constraint can be expressed as

CSt = WtL
S
t +

1

1− λ
Dt + TSt = Y st .

As usual, households maximise utility, where agents possess preferences as in (6). So, as before,

σ = −uiCCCi/uiC ; but additionally note that ϕ = uiLLL
i/uiL is the inverse-Frisch elasticity of labour

supply, and we have the standard intratemporal Euler equation,

uiL(Lit) = Wtu
i
C(Cit).

Log-linearising about the deterministic steady state gives the following labour supply condition for house-

hold i:

ϕL̂it = Ŵt − σĈit .

Since both households share the same elasticities, we can aggregate to get

ϕL̂t = Ŵt − σĈt,

and with Ĉt = Ŷt = L̂t we can write

Ŵt = (σ + ϕ) Ĉt. (12)

Also, as before, the consumption Euler equation is

ĈSt = EtĈ
S
t+1 − σ−1r̂t, (13)

noting that the H households do not have an Euler equation.

Typically in TANK models, we require the H household budget constraint as an equilibrium condition.

But before doing so, we need to specify rules for fiscal transfers (to be done soon). But before that, we

will cover the supply side of the economy.

3. Bilbiie notes that unlike in, say, Gaĺı, López-Salido, and Vallés (2007), households here do not trade their assets. They
instead hold and price the assets. This highlights the role of income inequality and profits.
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Firms. Production follows a standard NK textbook setup (Gaĺı, 2015). Households consume a basket

of differentiated goods indexed by j ∈ [0, 1],

Ct =

(∫ 1

0

Ct(j)
(ε−1)/εdj

)ε/(ε−1)

,

where ε is the elasticity of substitution. Demand for good j is

Ct(j) =

[
Pt(j)

Pt

]−ε
Ct,

where Pt(j)/Pt is good j’s relative price and Pt is the aggregate price index,

P 1−ε
t =

∫ 1

0

Pt(j)
1−εdj.

Monopolistically competitive firms produce each type of good with the following linear production tech-

nology:

Yt(j) = Lt(j),

with real marginal cost Wt.

Profits are given by

Dt(j) = (1 + τS)

[
Pt(j)

Pt

]
Yt(j)−WtLt(j)− TFt .

Assume that the government addresses distortions and inefficiencies arising my market distortions by

implementing a production subsidy so that the desired mark up is:

Pt(j)
∗

Pt
= 1 =

εW ∗t
(1 + τS)(ε− 1)

,

where the optimal subsidy to achieve this is τS = (ε− 1)−1. This subsidy is financed by a tax on firms:

TFt = τSYt.

Therefore, total profits are given by

Dt = Yt −WtLt.

A common convention in TANK models is the assumption of full insurance – or equivalent steady state

consumption between the different households. In other words, the taxes on firms leads to zero profits in

steady state (D = 0) and CH = CS = C. Log-linearising about the steady state, where D̂t = ln(Dt/Y ),

implies that profits vary inversely with the real wage,

D̂t = −Ŵt. (14)

This is an income effect for S-households – more on this later.
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Fiscal policy. The government adopts a redistributive tax system. It taxes profits at rate τD and

rebates these taxes to H households in the form of lump-sum transfers,

THt =
τD

λ
Dt.

It turns out, that this is a key transmission channel for monetary policy.

Market clearing. Goods and labour markets clear so that

Yt = Ct ≡ λCHt + (1− λ)CSt ,

and

Lt ≡ λLHt + (1− λ)LSt ,

whereby LH = LS = L. These market clearing conditions can be written as

Ŷt = Ĉt = λĈHt + (1− λ)ĈSt , (15)

and

L̂t = λL̂Ht + (1− λ)L̂St . (16)

Finally, we have everything we need to also add in the log-linearised budget constraint of the H household:

ĈHt = Ŵt + L̂Ht +
τD

λ
D̂t. (17)

Additionally, if prices are sticky we can add in an NKPC and Taylor rule (Fisher equation).

Now, the key point to capture the effects of inequality is to express individual variables as functions

of aggregates. Start with the log-linearised H household budget constraint and substitute in (14) and

L̂it = ϕ−1Ŵt − σ
ϕ Ĉ

i
t to write: (

1 +
σ

ϕ

)
ĈHt =

(
1 +

1

ϕ
− τD

λ

)
Ŵt.

Then use the aggregate labour supply condition (12) and the fact that Ŷt = L̂t = Ĉt to simply write

ĈHt = χĈt,

and recall that since H households consume all their income, we can also write

ĈHt = Ŷ Ht = χŶt, (18)

where

χ =

(
1− τD

λ + 1
ϕ

)
(ϕ+ σ)

1 + σ
ϕ

= 1 + ϕ

(
1− τD

λ

)
.
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What is (18) telling us? Despite the hand-to-mouth households consuming all their income, their con-

sumption and income co-moves either by less or more than one-to-one with aggregate income or consump-

tion. In other words, χ is the elasticity of H-type households’ consumption with respect to aggregate

income – or the cyclicality. In the baseline TANK model, χ depends mainly on fiscal redistribution and

labour supply. This will pin down the amplification of monetary (and fiscal) policy and shocks. Note

that as Bilbiie states, χ = 1 (by either infinitely elastic labour, ϕ = 0, or neutral redistribution, τD = λ),

nests the “Campbell-Mankiw benchmark” case.

What about S-type household income? Assuming that taxes on profits are an automatic stabiliser,4

define

TSt = − τD

1− λ
Dt.

Use this in the S-household budget constraint to then write an expression for their income,

Ŷ St = Ŵt + L̂St +
1− τD

1− λ
D̂t.

Then do some algebra by using the H-type and aggregate labour supply curves, profits (14), and Ĉt =

Ŷt = L̂t to write

ĈSt =
1− λχ
1− λ

Ŷt. (19)

Mechanically, we also have that if H-household’s elasticity to aggregate income is greater (less) than one,

then the S-household’s elasticity, (1− λχ)/(1− λ), must be less (greater) than one. As a bonus, we can

substitute (19) into (13) to write

Ĉt = EtĈt+1 −
1− λ

σ(1− λχ)
r̂t. (20)

Finally, define cyclical income inequality, γt, as simply

γt ≡ Ŷ St − Ŷ Ht =
1− χ
1− λ

Ŷt.

By construction, χ < 1 (χ > 1) coincides with procyclical (countercyclical) income inequality.

TANK Aggregate Demand. Under RANK, when aggregate demand increases, the real wage in-

creases (since prices are fixed in the short-run). But this lowers profits (since wages are equal to the

marginal cost). Since there is only the representative household, the gain from real wages and the loss in

economic rents cancel out. TANK breaks this neutrality result because there is an externality imposed

by hand-to-mouth households on saver households through an income effect.

Start with the case of no redistribution (τD = 0):

• Suppose demand ↑ and so Ŵ ↑.

4. In other words,
λTH

t = τDDt = −(1− λ)TS
t .

11
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• Ŷ H ↑ and ĈH since H-households do not have a negative income effect from a rise in wages.

• This leads to another round of an increase in aggregate demand, which shifts labour demand further

again, and so on and so forth...

• The result is that S-households end up paying for this because they end up working more due to

incurring negative income effect costs due to the rise in the marginal cost.

But τD > 0 dampens this channel as τD → χ ↓. H-households internalise some of the negative income

effect of higher marginal costs, and so demand does not increase as much as the no redistribution scenario.

The Cambpell-Mankiw benchmark (χ = 1) occurs when the distribution of profits is uniform and so

there is no income effect, τD = λ, or when agents are perfectly insured through wages, ϕ = 0. When

τD > 1, H-households receive a disproportionate share of initial profits – the expansion in aggregate

demand is smaller than the initial impulse as the H-households anticipate a fall in their income (χ < 1)

and S-households work less and keep the higher profits.

To get the aggregate consumption Euler, recall that for S-households, their problem is identical to

the representative household in RANK. So take (10), replace i with S, and use Ŷ St = Ŵt+ L̂St + 1−τD

1−λ D̂t,

D̂t = −Ŵt, and L̂St = L̂t = Ŷt = Ĉt to write the aggregate PE curve:

Ĉt = [1− β(1− λχ)] Ŷt −
(1− λ)β

σ
r̂t + β(1− λχ)EtĈt+1, (21)

which generalises to Cambpell and Mankiw’s equation with arbitrary χ 6= 1.

As we did in the RANK case, first get the Keynesian multiplier Ω for a real interest rate cut by

assuming EtĈt+1 = ρĈt, and use the aggregate Euler-IS curve, (20):

Ω ≡ dĈt
d(−r̂t)

=
1− λ

σ(1− ρ)(1− λχ)
.

Then get the direct effect of the interest rate reduction, ΩD, by using the aggregate PE curve (21) and

keeping income fixed:

ΩD ≡
dĈt
d(−r̂t)

∣∣∣∣∣
Ŷt=Ȳ

=
β(1− λ)

σ [1− βρ(1− λχ)]
,

which then gives the indirect effect,

ΩI ≡ Ω− ΩD =
(1− β(1− λχ))(1− λ)

σ(1− ρ)(1− λχ)(1− βρ(1− λχ))
.

We can then impute the aggregate MPC as

ω ≡ ΩI
Ω

=
1− β(1− λχ)

1− βρ(1− λχ)
.

This leads us to Bilbiie’s second proposition:
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Proposition (Bilbiie (2020) Proposition 2). In TANK, the aggregate MPC ω and multiplier Ω (for an

interest rate cut of persistence ρ) are:

ω =
1− β(1− λχ)

1− βρ(1− λχ)
; Ω =

1− λ
σ(1− ρ)(1− λχ)

.

There is amplification (dΩ/dλ > 0) if and only if income inequality is countercyclical:

χ > 1. (22)

To understand the proposition, assume that shocks to r̂t are transitory (ρ = 0), and recall the issues

with RANK:

• General equilibrium effect of r̂t ↓: Ω = σ−1, which is close to zero empirically.

• MPC is ω = 1− β, which is also close to zero.

With TANK, the general equilibrium effect of a rate cut is now Ω = (1 − λ)/[σ(1 − λχ)] and the MPC

becomes 1−β(1−λχ). The existence of hand-to-mouth households reduces the direct effect, ΩD, of interest

rate changes because H-households are basically not directly affected by them – the saver households are

the ones that engage in intertemporal substitution since only they have a consumption Euler equation.

So while the direct effect is proportionally lower in TANK, the indirect effect is stronger due to the higher

MPC. This is because H-households have an MPC of unity, and thus ∂ω/∂λ = βχ, where recall that λ

was the population ratio of hand-to-mouth households. In other words, this is effect of λ on the slope of

the PE curve.

Verifying amplification in (22) is straightforward:

∂Ω

∂λ
=

(χ− 1)ΩRANK

(1− λχ)2
.

Amplification (over RANK) occurs when the shift effect of the PE curve relative to RANK,

∂ ΩD

ΩRANK
D

∂λ
= −β,

dominates the aforementioned slope effect, i.e., −β + βχ > 0. When this is not the case, then there is

dampening. Dampening occurs when inequality is procyclical (χ < 1) as the hand-to-mouth households

internalise the negative effect of a potential wage increase on their income (via transfers). So rather than

increase their demand after a labour demand increase, they decrease it. This mechanism is covered in

the recent quantitative HANK literature as the “earnings channel” (Auclert, 2019).

Additionally, amplification occurs so long as λ < χ−1. If λ > χ−1 then an expansion to a real interest

rate decrease can no longer be an equilibrium. The income effect on S-households starts dominating the

IS curve swivels – this is Bilbiie (2008)’s “inverted AD curve” logic.

13
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Fiscal Multipliers in TANK. Given that TANK models usually comprise of “constrained” and “un-

constrained” agents, the macroeconomics literature focused on fiscal policy and multipliers. Here we use

the NK cross to analyse these issues. Start with the baseline case that government engages in wasteful

spending, Gt, funded by lump-sum taxes Tt, of which each agent pays Tit.

Exogenous redistribution: assume that H-households pay an arbitrary share of total taxes, λTHt =

αTt, while S-households pay (1− λ)TSt = (1− α)Tt. Here α can be interpreted as a proxy parameter for

tax regressivity. Assume that steady state values for Gt and Tt are zero for simplicity (with T̂Ht = THt /Y

and Ĝt = Gt/Y ) then decompose T̂Ht as

T̂Ht =
α

λ
T̂t =

α

λ
Ĝt = Ĝt −

(
1− α

λ

)
T̂t, (23)

the sum of a tax (spending) increase and a transfer to the hand-to-mouth households whenever α < λ. If

α > λ then there is a transfer from the H-households. These are different compared to the endogenous

redistribution mechanism we observed in the χ term (τD/λ).

With ŷit = Ŷ it − T̂it, (23) implies

ĈHt = ŷHt = χŷt + ζ
(
χ− α

λ

)
Ĝt,

with χ defined as before and

ζ =
1

1 + σ
ϕ

.

We then get

Ŷt = Ĉt + Ĝt,

ĈHt = Ŵt + L̂Ht +
τD

λ
D̂t − T̂Ht ,

and replace LHt in the above equation using ϕLit = Ŵt − σĈit and D̂t = −Ŵt to get(
1 +

σ

ϕ

)
ĈHt =

(
1− τD

λ
+

1

ϕ

)
Ŵt − T̂Ht ,

then use the aggregate labour supply condition and some other aggregate identities, Ŷt = L̂t = Ĉt +

Ĝt =⇒ Ŵt = (ϕ+ σ) Ĉt + ϕĜt, to write the above as

ĈHt = χĈt + ζ
(
χĜt − T̂Ht

)
. (24)

The second term captures the impact of fiscal variables on H-households, the coefficient ζ is the elasticity

of the H-household’s consumption to a transfer and governs the strength of the income effect relative

to substitution. This term is zero when labour supply is infinitely elastic (ϕ = 0), equal to unity when

labour is inelastic or when the income effect (σ) is zero (the case of log preferences).

14
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Much like with the method of getting (21), one can get the aggregate PE curve with fiscal policy:

Ĉt = [1− β(1− λχ)] ŷt −
(1− λ)β

σ
r̂t + β(1− λχ)EtĈt+1 + βλζ

(
χ− α

λ

)
(Ĝt − EtĜt+1), (25)

and with Ĉt = ŷt the aggregate Euler-IS curve is

Ĉt = EtĈt+1 −
1− λ

σ (1− λχ)
r̂t +

λζ

1− λχ

(
χ− α

λ

)
(Ĝt − EtĜt+1). (26)

With a bit of substitution (for ŷt = Ŷt − T̂t), we get the fiscal multiplier,

M ≡ dŶt

dĜt
= 1 +

λζ

1− λχ

(
χ− α

λ

)
. (27)

In TANK M > 1 – as opposed to M = 1 in RANK, if condition (22) holds generally: χ > α/λ, where the

RHS is the share of taxes that H-households need to pay.

• If they pay nothing (α = 0), then M > 1 for any value χ > 0.

• If tax is uniform (α = λ) then M > 1 if and only if χ > 1 just like in (22).

• The RANK condition (no multiplier) holds if λ = 0, or ϕ = 0 (infinitely elastic labour), or when

χ = α/λ.

The literature on fiscal multipliers in New Keynesian models is vast. The classic references are:

Gaĺı, López-Salido, and Vallés (2007) which numerically analysed spending multipliers in a TANK model

with capital; and Bilbiie, Meier, and Müller (2008) and Monacelli and Perotti (2011) which looked at

spending multipliers analytically; and Bilbiie, Monacelli, and Perotti (2013) focused on resdistribution or

transfer multipliers in a TANK model with financial market imperfections. Then there are papers such

as Eggertsson and Krugman (2012) which assessed government spending multipliers at the effective lower

bound. Then, more recently, Ghassibe and Zanetti (2022) build a model framework to analyse the state

dependence of fiscal multipliers.

2 A Simple HANK Model

One big omission in TANK (and RANK, obviously): precautionary savings. Here we derive a tractable

HANK (THANK) model where by agents can be in either a hand-to-mouth (H) state or an unconstrained

saver (S) state. Unlike the TANK case, here you can think of individual agents switching exogenously

between the two states. Agents have access to insurance – full within type (after idiosyncratic uncertainty

revealed) and limited across types. There are two assets: bonds which are liquid, and stocks which are

illiquid. Finally, bonds cannot be traded (no equilibrium liquidity) for simplification purposes.

The exogenous change of state follows a Markov chain. The probability to stay as type S is p(S|S) = s,

the probability to stay as type H is p(H|H) = h, the probability to transition from type H to type S is
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p(S|H) = 1 − h, and the probability to transition from type S to type H is p(H|S) = 1 − s. The mass

of H households follows a stationary distribution,

λ =
1− s

2− s− h
,

with the requirement that s ≥ 1− h, and is the solution to

(
λ 1− λ

)( h 1− h
1− s s

)
=
(
λ 1− λ

)
.

The equilibrium is characterised as follows. In every period, individuals that are H wish to borrow

but are unable to due to borrowing constraints. Neither can they access equity portfolios (since these

are held by savers). Like TANK, we assume that all H-households consume all their income, CHt = Y Ht .

Since the transition probabilities are independent of history, and there is perfect insurance amongst types,

all agents that hand-to-mouth in a given period have the same income and consumption. Conversely,

savers save in order to self-insure against the risk of becoming hand-to-mouth. But since equity is costly

to liquidate, they can engage in precautionary savings through bonds. But since H-individuals cannot

borrow, and there is no government-provided liquidity, bonds are in zero net supply (Krusell, Mukoyama,

and Smith, 2011). As in RANK, an Euler equation prices these bonds even though they are not traded.

But the Euler equation takes factors in the transition probabilities to the constrained H state unlike

in TANK. In line with some HANK models, such as Kaplan, Moll, and Violante (2018), there is a [crude]

distinction between liquid (bonds) and illiquid (equity) assets: in equilibrium, there is infrequent (limited)

participation in the stock market.

For derivation, started by noting the following per-capita bond flows. Let BSt be the beginning of

period t after consumption-saving choice – also after changing state and pooling. Let ASt be the end of

period t− 1 after consumption-saving choice but before moving:

(1− λ)BSt = (1− λ)sASt + (1− λ)(1− s)AHt ,

λBHt = (1− λ)(1− s)ASt + λhAHt .

Rescale and use λ = 1−s
1−s+1−h :

BSt = sZSt + (1− s)AHt ,

BHt = (1− λ)ASt + hAHt .

The family (head) optimisation problem is:

V(BSt−1, B
H
t−1, ψt−1) = max

{CS
t ,A

S
t ,A

H
t ,C

H
t ,ψt}

(1− λ)u(CSt ) + λu(CHt ) + βEtV(BSt , B
H
t , ψt),
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subject to:

CSt +ASt + Vtψt = Y St + rt−1B
S
t−1 + ψt−1(Vt +Dt),

CHt +AHt = Y Ht + rt−1B
H
t−1,

ASt , A
H
t ≥ 0,

and the laws of motion for bond flows relating the Ai to the Bi.

Euler equations. The FOCs are the following:

u′(CSt ) ≥ βEt

[
Vt+1 +Dt+1

Vt
u′(CSt+1)

]
, ψt = ψt−1 = (1− λ)−1, (28)

which is an Euler equation corresponding to the choice of equity. There is no self-insurance motive, as

equity cannot be carried when an individual transitions to the H island – this equation is the same as

with a representative agent. The FOC for the bond choice of S-island agents is given by

u′(CSt ) ≥ βEt
[
rt
{
su′(CSt+1) + (1− s)u′(CHt+1)

}]
,

0 = ASt
{
u′(CSt )− βEt

[
rt
{
su′(CSt+1) + (1− s)u′(CHt+1)

}]}
,

(29)

where the second equation is a slackness condition. The FOC for the bond choice of agents in the H-island

is:

u′(CHt ) ≥ βEt
[
rt
{

(1− h)u′(CSt+1) + hu′(CHt+1)
}]
,

0 = AHt
{
u′(CHt )− βEt

[
rt
{

(1− h)u′(CSt+1) + hu′(CHt+1)
}]}

.
(30)

Recall that only bonds can be used by agents as they transition across H and S islands. With this

market structure, Euler equations (29) and (30) are similar as if they were in a Bewley-Huggett-Aiyagari

economy with incomplete markets. Here, 1 − s is the uninsurable risk to switch to a “bad” state next

period, for which only bonds can be used to self-insure. This is the precautionary savings motive in this

model.

Then, make two more additional assumptions for analytical tractability: assume that the budget

constraint forH-island individuals bind with equality and that the Euler equation (30) is a strict inequality

(and so AHt = 0):

CHt = Y Ht .

The motivation for this could be due to, say, a liquidity shock or an impatience shock which makes them

want to consume more today. Second, assume that we work with the zero-liquidity limit. So that even

though the demand for bonds from S is well defined (ASt > 0), the supply of bonds is zero so trade does

not occur in equilibrium. Thus, the Euler equation (29) binds with equality.

So, the only equation that differs from TANK is the “self-insurance” Euler equation against the risk
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of moving to the H-island:

(CSt )−σ = βEt
[
rt
{
s(CSt+1)−σ + (1− s)(CHt+1)−σ

}]
, (31)

which comes from (29) and standard CRRA preferences. Log-linearising this equation about the sym-

metric steady (and with D = 0) state yields

ĈSt = sEtĈ
S
t+1 + (1− s)EtĈHt+1 − σ−1r̂t. (32)

Recall that like the TANK case we have (18), regardless of the redistribution scheme that determines χ:

ĈHt = χŶt,

ĈSt =
1− λχ
1− λ

Ŷt.

Substituting these into (32):

Ŷt = sEtŶt+1 +
(1− s)(1− λ)χ

1− λχ
EtŶt+1 −

1− λ
σ(1− λχ)

r̂t

=

[
s(1− λχ) + (1− s)(1− λ)χ

1− λχ

]
EtŶt+1 −

1− λ
σ(1− λχ)

r̂t

=

[
s− sλχ+ χ− λχ− sχ+ sλχ+ 1− 1 + λχ− λχ

1− λχ

]
EtŶt+1 −

1− λ
σ(1− λχ)

r̂t

=

[
1 +

(χ− 1)(1− s)
1− λχ

]
︸ ︷︷ ︸

HANK

EtŶt+1 −
1

σ

1− λ
(1− λχ)︸ ︷︷ ︸

TANK

r̂t,

and get the Euler-IS equation for the HANK model, which leads us to Bibliie’s next proposition:

Proposition (Bilbiie (2020) Proposition 3). In the analytical HANK model, the aggregate Euler-IS curve

is:

Ĉt = δEtĈt+1 −
1− λ

σ(1− λχ)
r̂t, δ = 1 +

(χ− 1)(1− s)
1− λχ

, (33)

with idiosyncratic uncertainty s < 1, this is characterised by

• discounting: δ < 1 if and only if χ < 1 (procyclical inequality); and

• compounding: δ > 1 if and only if χ > 1 (countercyclical inequality).

Assuming that λ < χ−1; otherwise, the elasticity of aggregate demand to interest rates changes sign when

χ > 1 with complicated implications for δ.

Intuition is as follows. Consider the RANK case: Good news about future income implies a one-to-

one increase in aggregate demand today as the household wants to substitute consumption towards the

present. Without any assets (or capital), income adjust to deliver this as markets clear. The same occurs

in TANK with permanent idiosyncratic shocks (s = h = 1), δ = 1.
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When there is “discounting”, δ < 1, which generalises McKay, Nakamura, and Steinsson (2016)

(nested for χ = 0 =⇒ δ = s = 1−h = 1−λ). When households receive good news about future aggre-

gate income or consumption, they also realise that in some periods in the future they will be constrained

and not benefit fully from it – recall that χ denoted the H-household’s elasticity consumption/income

to aggregate income. Agents self-insure or engage in precautionary savings against this and so their

consumption today is less than that in a RANK or economy without uncertainty. As there is no asset to

save in (or capital), the reduction in consumption and consequent increase in saving results in a drop in

output. Intuitively, precautionary saving is strengthened the higher the risk of idiosyncratic uncertainty

(1−s), the lower is χ, and the longer an agent expects to be in the H-state (higher λ at a given s) implies

higher h).

The easiest way to think about the “compounding” case is that H-agents are induced to increase

their consumption both contemporaneously but also intertemporally when they receive good news about

future income. Because of progressive redistribution, they demand less saving, and this effect is magnified

with higher risk (1− s), χ, and λ.

One final aside, we can also nest the case of acyclical risk where s = 0 (Woodford, 1990) and λ = 0.5

so we have

Ĉt =
χ

2− χ
EtĈt+1 −

1

σ(2− χ)
r̂t,

where δ ≡ χ/(2− χ) ≷ 1 if and only if χ ≷ 1.

NK Cross with HANK. To derive the aggregate PE curve, start with (32),

ĈSt = sEtĈ
S
t+1 + (1− s)EtĈHt+1 − σ−1r̂t,

and iterate forward:

EtĈ
S
t+1 = sEt+1Ĉ

S
t+2 + (1− s)Et+1Ĉ

H
t+2 − σ−1Etr̂t+1.

Then substitute the above back into (32) to get

ĈSt = sEt
[
sEt+1Ĉ

S
t+2 + (1− s)Et+1Ĉ

H
t+2 − σ−1Etr̂t+1

]
+ (1− s)EtĈHt+1 − σ−1r̂t

= s2EtĈ
S
t+2 + s(1− s)EtĈHt+2 + (1− s)EtĈHt+1 − σ−1 (r̂t + sEtr̂t+1)

⇔ ĈSt = siEtĈ
S
t+i + Et

i−1∑
k=0

sk
[
(1− s)ĈHt+1+k − σ−1r̂t+k

]
Additionally, we can use the SDF instead of the real interest rate to write (32) as

ĈSt = sEtĈ
S
t+1 + (1− s)EtĈHt+1 + σ−1EtΛ̂

S
t,t+1. (34)
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Then do the same forward iteration and substitution trick as above:

ĈSt = sEt
[
sEt+1Ĉ

S
t+2 + (1− s)Et+1Ĉ

H
t+2 + σ−1EtΛ̂

S
t,t+2

]
+ (1− s)EtĈHt+1 + σ−1EtΛ̂t,t+1

= s2EtĈ
S
t+2 + s(1− s)EtĈHt+2 + (1− s)EtĈHt+1 + σ−1Et

[
Λ̂St,t+1 + sΛ̂t,t+2

]
⇔ ĈSt = siEtĈ

S
t+i + Et

i−1∑
k=0

sk
[
(1− s)ĈHt+1+k + σ−1Λ̂St,t+k

]
.

But also recall that Λ̂t,t+i = Λ̂t,t+1 + Λ̂t+1,t+2 + ...+ Λ̂t+i−1,t+i, and so (34) can be written as

σ−1EtΛ̂
S
t,t+i = ĈSt − sEtĈSt+1 − (1− s)EtĈHt+1 + EtĈ

S
t+1 − sEtĈSt+2 − (1− s)EtĈHt+2+

· · ·+ EtĈ
S
t+i−1 − sEtĈSt+i − (1− s)EtĈHt+i

∴ σ−1EtΛ̂
S
t,t+i + EtĈ

S
t+i = ĈSt + (1− s)Et

i∑
k=1

(
ĈSt+k − ĈHt+k

)
.

Then as we did with (3) and (5), log-linearise the budget constraint:

Et

∞∑
i=0

βi
(

Λ̂St,t+i + ĈSt+i

)
= Et

∞∑
i=0

βi
(

Λ̂St,t+i + Ŷ St+i

)
.

Now, do some algebra, using the above results:

Et

∞∑
i=0

βi
[
Λ̂St,t+i + ĈSt+i +

(
1

σ
− 1

)
Λ̂St,t+i

]
= Et

∞∑
i=0

βi
[
Λ̂St,t+i + Ŷ St+i +

(
1

σ
− 1

)
Λ̂St,t+i

]

Et

∞∑
i=0

βi
(

1

σ
Λ̂St,t+i + ĈSt+i

)
= Et

∞∑
i=0

βi
(

1

σ
Λ̂St,t+i + Ŷ St+i

)

Et

∞∑
i=0

βi

[
ĈSt + (1− s)Et

i∑
k=1

(
ĈSt+k − ĈHt+k

)]
= Et

∞∑
i=0

βi
(

1

σ
Λ̂St,t+i + Ŷ St+i

)
1

1− β
ĈSt + Et

∞∑
i=0

βi(1− s)

[
Et

i∑
k=1

(
ĈSt+k − ĈHt+k

)]
= Et

∞∑
i=0

βi
(

1

σ
Λ̂St,t+i + Ŷ St+i

)
1

1− β
ĈSt +

1− s
1− β

Et

∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
= Et

∞∑
i=0

βi
(

1

σ
Λ̂St,t+i + Ŷ St+i

)
,
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and use Λ̂t,t+i = −
∑i
k=0 r̂t+k and Λ̂t,t = 0,

1

1− β
ĈSt = Et

∞∑
i=0

βiσ−1Λ̂St,t+i + Et

∞∑
i=0

βiŶ St+i −
1− s
1− β

Et

∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
ĈSt =

1− β
σ

Et

∞∑
i=0

βiΛ̂St,t+i + (1− β)Et

∞∑
i=0

βiŶ St+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
=

1− β
σ

Et

∞∑
i=0

βiΛ̂St,t+i + (1− β)Et

∞∑
i=0

βiŶ St+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
= (1− β)Et

∞∑
i=0

βiŶ St+i −
(1− β)

σ
Et

∞∑
i=0

βir̂t+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
=

(1− β)

σ

(
0− Et

∞∑
i=1

βi
i∑

k=0

r̂t+k

)
+ (1− β)Et

∞∑
i=0

βiŶ St+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
= (1− β)Et

∞∑
i=0

βiŶ St+i −
β

σ
Et

∞∑
i=0

βir̂t+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
ĈSt = (1− β)Ŷ St −

β

σ
r̂t + (1− β)Et

∞∑
i=1

βiŶ St+i −
β

σ
Et

∞∑
i=1

βir̂t+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+i − ĈHt+i

)
.

By writing the above form in recursive form, we get our consumption function:

ĈSt = (1− β)Ŷ St −
β

σ
r̂t − (1− s)βEt

(
ĈSt+1 − ĈHt+1

)
+ βEtĈ

S
t+1

= (1− β)Ŷ St −
β

σ
r̂t − sβEtĈ

S
t+1 + β(1− s)EtĈHt+1,

noting that

EtĈ
S
t+1 = (1− β)Ŷ St+1 −

β

σ
r̂t+1 + (1− β)Et

∞∑
i=1

βiŶ St+1+i

− β

σ
Et

∞∑
i=1

βir̂t+1+i − (1− s)Et
∞∑
i=1

βi
(
ĈSt+1+i − ĈHt+1+i

)
βĈSt+1 = β(1− β)Ŷ St+1 −

β2

σ
r̂t+1 + β(1− β)Et

∞∑
i=1

βiŶ St+1+i

− β2

σ
Et

∞∑
i=1

βir̂t+1+i − β(1− s)Et
∞∑
i=1

βi
(
ĈSt+1+i − ĈHt+1+i

)
= (1− β)Et

∞∑
i=0

β1+iŶt+1+i −
β

σ
Et

∞∑
i=0

β1+ir̂t+1+i − (1− s)Et
∞∑
i=0

β1+i
(
ĈSt+1+i − ĈHt+1+i

)
.

Finally, use ĈHt = Ŷ Ht = χŶt, Ĉ
S
t = 1−λχ

1−λ Ŷt, Ŷ
S
t = Ŵt+L̂

S
t + 1−τD

1−λ D̂t, D̂t = −Ŵt, and L̂St = L̂t = Ŷt = Ĉt

to aggregate the recursive expression of the consumption function (like we did for (21)) to get the HANK
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PE curve:

Ĉt = [1− β(1− λχ)] Ŷt −
(1− λ)β

σ
r̂t + βδ(1− λχ)EtĈt+1. (35)

As before, get the Keynesian multiplier,

Ω ≡ dĈt
d(−r̂t)

=
1− λ

σ(1− δρ)(1− λχ)
,

the direct effect of the interest rate reduction,

ΩD ≡ (1− ω)Ω ≡ dĈt
d(−r̂t)

∣∣∣∣∣
Ŷt=Ȳ

=
(1− λ)β

σ [1− βδρ(1− λχ)]
,

the indirect effect,

ΩI ≡ Ω− ΩD =
(1− λ) [1− β(1− λχ)]

σ(1− δρ)(1− λχ) [1− βδρ(1− λχ)]
,

and the aggregate MPC as

ω ≡ ΩI
Ω

=
1− β(1− λχ)

1− δβρ(1− λχ)
.

Intuitively, HANK differs to TANK through δ, which itself augments persistence by making shocks

either more (less) persistent when δ > 1 (δ < 1): shocks that are about the future are either attenuated

or amplified. This is intuitive as precautionary savings is inherently about an agent’s perception of future

states of the world. Below we will see an application of the HANK model.

2.1 Application: The Forward Guidance puzzle

One application that highlights the novelty of the HANK model is the resolution of the Forward Guidance

(FG) puzzle. Consider a simple case where the monetary authority announces an interest rate cut in

period t+ T . Start by iterating (35) forward:

Ĉt = [1− β(1− λχ)]︸ ︷︷ ︸
A

Ŷt −
(1− λ)β

σ︸ ︷︷ ︸
B

r̂t + βδ(1− λχ)︸ ︷︷ ︸
D

EtĈt+1,

Ĉt+1 = AŶt+1 −Br̂t+1 +DEt+1Ĉt+2,

Ĉt+2 = AŶt+2 −Br̂t+2 +DEt+2Ĉt+3,

...

Ĉt+i = AŶt+i −Br̂t+i +DEt+iĈt+1+i.

Do some recursive substitution to get

Ĉt = A

∞∑
i=0

DiŶt+i −B
∞∑
i=0

Dir̂t+i +DiEt+iĈt+i,
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or, and by using the fact that limi→∞Di = 0:

Ĉt = [1− β(1− λχ)]

∞∑
i=0

[βδ(1− λχ)]
i
Ŷt+i −

(1− λ)β

σ

∞∑
i=0

[βδ(1− λχ)]
i
r̂t+i. (36)

It becomes intuitive that HANK can either resolve or amplify the FG puzzle by observing the second

term on the RHS.

To see it more clearly, we’re going to do some more recursion – but this time start with (33),

Ĉt = δEtĈt+1 −
1− λ

σ(1− λχ)
r̂t.

Substitute Ĉt+1, Ĉt+2, and so on into the above expression to get

Ĉt = δEt

[
δEt+1Ĉt+2 −

1− λ
σ(1− λχ)

r̂t+1

]
− 1− λ
σ(1− λχ)

r̂t

= δ2EtĈt+2 − δ
1− λ

σ(1− λχ)
Etr̂t+1 −

1− λ
σ(1− λχ)

r̂t

= δ2Et

[
δEt+2Ĉt+3 −

1− λ
σ(1− λχ)

r̂t+2

]
− δ 1− λ

σ(1− λχ)
Etr̂t+1 −

1− λ
σ(1− λχ)

r̂t

...

= δTEtĈt+T − Et

T∑
k=1

δk−1 1− λ
σ(1− λχ)

r̂t+k−1,

or for any k from 0 to T , where k is the date of the FG announcement and T is the date of implementation

of the interest rate change:

Ĉt+k = δT−kEt+kĈt+T − Et

T∑
k=0

δT−k
1− λ

σ(1− λχ)
r̂t+k.

Then for any k from 0 to T , the total effect of FG is

ΩF (k) ≡ dĈt+k
d(−rt+T )

= δT−k
1− λ

σ(1− λχ)
.

The direct FG effect is obtained by differentiating (36):

ΩFD ≡
dĈt+k

d(−r̂t+T )

∣∣∣∣∣
Ŷt+k=Ȳ

=
(1− λ)β

σ
[δβ (1− λχ)]

T
.
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The indirect FG effect can be retrieved from the first term of (36):

ΩFD ≡
dĈt+k

d(−r̂t+T )

∣∣∣∣∣
r̂t+k=r̄

= [1− β(1− λχ)] Et+k

T∑
i=0

[βδ(1− λχ)]
i dĈt+i
d(−r̂t+T )

=
1− λ

σ(1− λχ)
[1− β(1− λχ)] Et+k

T∑
i=0

[βδ(1− λχ)]
i
δT−i

=
1− λ

σ(1− λχ)
δT
{

1− [β(1− λχ)]
1+T

}
.

This gives:

Proposition (Bilbiie (2020) Proposition 4). The multiplier of FG (an interest rate cut in T periods) and

the MPC in the analytical HANK model are

ΩF =
1− λ

σ(1− λχ)
δT , ωF = 1− [β(1− λχ)]

1+T
.

The multiplier decreases with the horizon ∂ΩF /∂T < 0, thus resolving the FG puzzle, if and only if there is

discounting δ < 1. While in the compounding case, the multiplier increases with the horizon ∂ΩF /∂T > 0

and the FG puzzle is aggravated.

In RANK (s = 1 and λ = 0), ΩF = 1 and is invariant to time – the classic case of the FG puzzle (Del

Negro, Giannoni, and Patterson, 2023); an interest rate cut announcement has the same effect regardless

of whether it takes place soon or much later – vastly at odds with the empirical evidence. In the TANK

limit s = h = 1 with δ = 1, contemporaneously, FG is more (χ > 1) or less (χ < 1) powerful than in

RANK, but still time invariant. In other words, the potency of FG does not depend on T and so the

puzzle remains in TANK.

But HANK resolves the FG puzzle and in a pretty intuitive way (with discounting). Since agents are

unsure about whether or not they can benefit from the rate cut (due to being hand-to-mouth), the further

away the rate cut is there, the less it leads to an increase in consumption. In other words, with discounting,

the power of FG decreases over the time horizon as shown by McKay, Nakamura, and Steinsson (2016)

first showed in a special case nested here for χ = 0 and IID idiosyncratic uncertainty 1− s = λ. Bilbiie’s

proposition here is that this applies generally as long as there is some idiosyncratic uncertainty (1−s > 0)

and fiscal redistribution or whatever else makes χ < 1. These lead to precautionary savings and thus an

under-reaction with respect to RANK and TANK in response to good future income news such as FG.
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Gaĺı, Jordi. 2015. Monetary Policy, Inflation, and the Business Cycle. 2nd Edition. Princeton University

Press.
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