
PhD Macroeconomics:
Prerequisites for DSGE Models

David Murakami

University of Milan and University of Pavia

5 April 2024

Introduction VARs Rational Expectations DSGE Recipe References # 1



Introduction

▶ Before we tackle the RBC model, it’s worth going over a few important mathematical
concepts.

▶ Some of the concepts are essential to understand now, but some of the other
concepts, such as solution methods for DSGE models can be revisited later.

▶ But it’s good to be aware of them now, and keep them in mind as we move on in the
course.
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Vector Autoregressions
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A brief recap I

▶ As we saw in the first lecture, AR models are useful tools for understanding the
dynamics of individual variables such as output or consumption, but they ignore the
interrelationships between variables.

▶ A vector autoregression (VAR) model captures the dynamics of n different variables
allowing each variable to depend on lagged values of all variables.

▶ More specifically, with VAR models we can examine the impulse responses of all n
variables to all n shocks.

▶ Consider the following simple VAR(1) model with two variables and one lag:

y1,t = a11y1,t−1 + a12y2,t−1 + e1,t,
y2,t = a21y1,t−1 + a22y2,t−1 + e2,t,

where e1,t and e2,t are shocks to the system. What are these shocks?
▶ They could be shocks which macroeconomists are interested in.
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A brief recap II
▶ VARs are a very common framework for modelling macroeconomic dynamics and the

effects of shocks.
▶ But while VARs can describe how things work, they cannot explain why things work –

hence why we need models based on economic theory (e.g., DSGE models!).
▶ These VAR models were introduced to the economics discipline by Sims (1980).
▶ Sims was telling macroeconomists to “get real” – move on from overly stylised

models (e.g. IS-LM models).
▶ VARs were an alternative that allowed one to model macroeconomic data accurately,

without having to impose lots of incredible restrictions.
▶ In the phrase used in an earlier paper by Sargent and Sims (who shared the Nobel

prize) it was “macro modelling without pretending to have too much a priori theory”.
▶ We will see that VARs are not theory free. But they do make the role of theoretical

identifying assumptions far clearer than was the case for the types of models Sims
was criticising.
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Matrix representation of VARs and VMAs I

▶ Let’s consider our simple VAR(1) model:

y1,t = a11y1,t−1 + a12y2,t−1 + e1,t, e1,t
iid∼ N(0, σ21 ),

y2,t = a21y1,t−1 + a22y2,t−1 + e2,t, e2,t
iid∼ N(0, σ22),

which we can express more compactly using matrices. Let

Yt =

[
y1,t
y2,t

]
, A =

[
a11 a12
a21 a22

]
, et =

[
e1,t
e2,t

]
,

and so we can write the simple VAR(1) model as:

Yt = AYt−1 + et. (1)
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Matrix representation of VARs and VMAs II

▶ VARs express variables as a function of what happened yesterday and today’s shocks.
But what happened yesterday depended on yesterday’s shocks and on what
happened the day before, and so on.

▶ So with a bit of recursion, and like we do with AR(1) models, we can express the VAR(1)
model as a vector moving average (VMA) model:

Yt = et + AYt−1
= et + A [et−1 + AYt−2]
= et + Aet−1 + A2 [et−2 + AYt−3]

...
Yt = et + Aet−1 + A2et−2 + A3et−3 + ...+ Ate0.
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Matrix representation of VARs and VMAs III

▶ This makes it clear how today’s values for the series are the cumulation of all the
shocks from the past. It is also useful for deriving predictions about the properties of
VARs.

Introduction VARs Rational Expectations DSGE Recipe References # 8



Impulse response functions I

▶ Suppose there is an initial shock identified as:

e0 =

[
1
0

]
,

and then all shock terms are zero afterwards, i.e., et = 0, ∀t > 0.
▶ Using our VMA representation we see that the response in Yt after n periods is

An
[
1
0

]
.

▶ So the impulse response function (IRF) for VARs are directly analogous to the IRFs for
AR(1) models that we looked at before.
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Impulse response functions II

▶ VARs are often used for forecasting. Suppose we observe our vector of variables Yt.
What is our forecast for Yt+1?

▶ Using forward iteration, we could write the following for the next period:

Yt+1 = AYt + et+1.

▶ But because Etet+1 = 0, an unbiased forecast at time t is AYt.
▶ In other words, EtYt+1 = AYt. The same reasoning tells us that A2Yt is an unbiased

forecast of Yt+2, and A3Yt is an unbiased forecast of Yt+3, and so on.
▶ So once a VAR is estimated and organised in this form, it is very easy to construct

forecasts.
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Impulse response functions III

▶ What about more than one lagged term? It turns out the first-order matrix
representation can represent VARs with longer lags. Consider the two-lag system:

y1,t = a11y1,t−1 + a12y1,t−2 + a13y2,t−1 + a14y2,t−2 + e1,t
y2,t = a21y1,t−1 + a22y1,t−2 + a23y2,t−1 + a24y2,t−2 + e2,t,

and define the vector

Zt =


y1,t
y1,t−1
y2,t
y2,t−1

 .
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Impulse response functions IV

▶ This system can be represented in matrix form as

Zt = AZt−1 + et, (2)

where

A =


a11 a12 a13 a14
0 0 0 0
a21 a22 a23 a24
0 0 0 0

 , et =


e1,t
0
e2,t
0

 .

▶ The representation (2) is called the “companion form” matrix representation.
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Interpreting shocks I

▶ The system we’ve been looking at is usually called a “reduced-form” VAR model. It is a
purely econometric model, without any theoretical element, and fluctuations in the
system are driven by the shocks et. But how should we interpret these shocks?

▶ Suppose that e1,t is a shock that affects only y1,t on impact and e2,t is a shock that
affects only y2,t on impact. For instance, one can use the IRFs generated from an
inflation-output VAR to calculate the dynamic effects of “a shock to inflation” and “a
shock to output”.

▶ But we may imagine that the shocks are an “aggregate supply” shock and an
“aggregate demand” shock and that both of these shocks have a direct effect on both
inflation and output.

▶ How can we breakdown which “part” of e1,t, say, affects only output?
▶ If we knew this or had an “identification strategy” to find this, then we could identify

the component(s) of et that only affect inflation and that only affect output.
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Interpreting shocks II

▶ We could then interpret et as being the reduced-form shocks which are comprised of
“structural shocks”, εt.

▶ Suppose reduced-form and structural shocks are related by

e1,t = c11ε1,t + c12ε2,t,
e2,t = c21ε1,t + c22ε2,t,

and in matrix form we can write this as

et = Cεt.
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Interpreting shocks III

▶ These two VMA representations describe the data equally well:

Yt = et + Aet−1 + A2et−2 + A3et−3 + ...+ Ate0,
⇔ Yt = Cεt + ACεt−1 + A2Cεt−2 + A3Cεt−3 + ...+ AtCε0.

▶ We can interpret the model as one with reduced form shocks, et, and IRFs given by An;
or as a model with structural shocks, εt, and IRFs are given by AnC. We could do this
for any C if we knew the structural shocks.

▶ Another way to see how reduced-form shocks can be different from structural shocks
is if there are contemporaneous interactions between variables – which is likely in
macroeconomics.
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Interpreting shocks IV

▶ Consider the following model:

y1,t = a12y2,t + b11y1,t−1 + b12y2,t−1 + ε1,t,

y2,t = a21y1,t + b21y1,t−1 + b22y2,t−1 + ε2,t,

which can be written in matrix form as:

AYt = BYt−1 + εt,

where

A =

[
1 −a12

−a21 1

]
, B =

[
b11 b12
b21 b22

]
.

Introduction VARs Rational Expectations DSGE Recipe References # 16



Interpreting shocks V
▶ Now, if we estimate the “reduced-form” VAR model,

Yt = DYt−1 + et,

then the reduced-form shocks and coefficients are:

D = A−1B,
et = A−1εt.

▶ Again, the following two decompositions both describe the data equally well:

Yt = et + Det−1 + D2et−2 + D3et−3 + ...,

⇔ Yt = A−1εt + DA−1εt−1 + D2A−1εt−2 + ...+ DtA−1ε0.
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Interpreting shocks VI

▶ For the structural model, the impulse responses to the structural shocks from n
periods are given by DnA−1. This is true for any matrix A.

▶ So why should we care about this? There seems to be no problem with forecasting
with reduced-form VARs: Once you know the reduced-form shocks and how they
affected today’s value of the variables, you can use the reduced-form coefficients to
forecast, right?

▶ The problem comes when you start asking “what if” questions/counterfactuals.
✱ For example, “what happens if there is a shock to the first variable in the VAR?”

▶ In practice, the error series in a reduced-form VAR are usually correlated with each
other.

▶ So are you asking “What happens when there is a shock to the first variable only?” or,
are you asking “What usually happens when there is a shock to the first variable given
that this is usually associated with a corresponding shock to the second variable?”
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Interpreting shocks VII

▶ Most interesting questions about the structure of the economy relate to the impact of
different types of shocks that are uncorrelated with each other.

▶ A structural identification that explains how the reduced-form shocks are actually
combinations of uncorrelated structural shocks is far more likely to give clear and
interesting answers.
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SVARs: A general formulation I

▶ In its general formulation, the structural VAR (SVAR) is:

A
n×n

Yt
n×1

= B
n×n

Yt−1
n×1

+ C
n×n

εt
n×1

, εt
iid∼ N(0,Σ). (3)

▶ The model is fully described by the following parameters: n2 parameters in A, n2

parameters in B, n2 parameters in C, and n2+n
2 parameters in Σ which describes the

patterns of covariances of the underlying shock terms.
▶ Adding all these together, we see that the most general form of the SVAR is a model

with 3n2 + n2+n
n parameters.
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SVARs: A general formulation II

▶ But estimating the reduced-form VAR,

Yt = DYt−1 + et,

only gives us information on n2 + n2+n
2 parameters: the coefficients in D and the

estimated variance-covariance matrix of the reduced form errors.
▶ To obtain information about structural shocks, we thus need to impose 2n2 a priori

theoretical restrictions on our SVAR.
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The Cholesky decomposition I

▶ It’s probably best to go through an example. Start with a reduced-form VAR with three
variables and the errors, e1,t, e2,t, and e3,t:

Yt = DYt−1 + et,

⇔

xtyt
zt

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


xt−1yt−1
zt−1

+

e1,te2,t
e3,t

 ,
(4)

where the joint distribution of et is:e1,te2,t
e3,t

 iid∼ N(0,Σ), Σ =

σ2x σxy σxz
σyx σ2y σyz
σzx σzy σ2z

 .
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The Cholesky decomposition II

▶ Now, we want to express the shocks et as a function of structural shocks. Apply the
following restriction:

e1,t = c11ε1,t
e2,t = c21ε1,t + c22ε2,t
e3,t = c31ε1,t + c32ε2t + c33ε3,t,

or, in matrix form: e1,te2,t
e3,t

 =

c11 0 0
c21 c22 0
c31 c32 c33


ε1,tε2,t
ε3,t

 ,

⇔ et = Cεt,

(5)

Introduction VARs Rational Expectations DSGE Recipe References # 23



The Cholesky decomposition III

where the joint distribution of εt is:ε1,tε2,t
ε3,t

 iid∼ N

0,

1 0 0
0 1 0
0 0 1


 .

▶ How do we get C? Estimation is one option, but the easier way is to use the Choleski
decomposition for the variance-covariance matrix Σ:

Σ = CC⊤,

=⇒ C−1Σ(C⊤)−1 = In.
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The Cholesky decomposition IV

▶ To see how this works, first note that the transpose of equation (5) is:

e⊤t = (Cεt)⊤

= ε⊤t C⊤,

so post multiply (5) with e⊤t to get:

ete⊤t = Cεtε⊤t C⊤, (6)

or equivalently:e1,te2,t
e3,t

[
e1,t e2,t e3,t

]
=

c11 0 0
c21 c22 0
c31 c32 c33


ε1,tε2,t
ε3,t

[
ε1,t ε2,t ε3,t

]c11 c21 c31
0 c22 c32
0 0 c33

 ,
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The Cholesky decomposition V

and if we take expectations of (6), we get:

Et
[
ete⊤t

]
= Et

[
Cεtε⊤t C⊤

]
⇔ Σ = CInC⊤ = CC⊤. (7)

▶ Identification done! We have shown that we can get C by a Choleski decomposition
for the variance-covariance matrix.
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The Cholesky decomposition VI

▶ So, from (4), if we substitute in equation (5), we havextyt
zt

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


xt−1yt−1
zt−1

+

c11 0 0
c21 c22 0
c31 c32 c33


ε1,tε2,t
ε3,t


⇔ Yt = DYt−1 + Cεt,

which can be transformed into:

C−1Yt = C−1DYt−1 + εt, (8)

which is nothing but a SVAR with what macro-econometricians like to call a “short-run
restriction.”

▶ Note now that, by construction, the εt shocks constructed in this way are
uncorrelated with each other.

Introduction VARs Rational Expectations DSGE Recipe References # 27



The Cholesky decomposition VII

▶ This method posits a sort of “causal chain” of shocks.
✱ The first shock affects all of the variables at time t.
✱ The second only affects two of them at time t.
✱ The last shock only affects the last variable at time t.

▶ There is a serious drawback to this however: The causal ordering is not unique.
▶ Any one of the VAR variables can be listed first, and any one can be listed lasted. This

means there are n! = 1× 2× 3× ...× n possible recursive orderings.
▶ We need to think very carefully about our own prior thinking about causation!
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Solving Models with Rational Expectations
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Introducing expectations I

▶ A key sense in which DSGE models differ from VARs is that while VARs just have
backward-looking dynamics, DSGE models have both backward-looking and
forward-looking dynamics.

▶ The backward-looking dynamics stem, for instance, from identities linking today’s
capital stock with last period’s capital stock and this period’s investment. For
example:

Kt = (1− δ)Kt−1 + It.

▶ The forward-looking dynamics stem from optimising behaviour: What agents expect
to happen tomorrow is very important for what they decide to do today – think about
our consumption Euler equation.

▶ Modelling this idea requires an assumption about how people formulate their
expectations.
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Introducing expectations II

▶ This approach was criticised in the 1970s by economists such as Robert Lucas and
Thomas Sargent.

▶ Lucas and Sargent instead promoted the use of an approach which they called
“Rational Expectations”.

▶ In economics, rational expectations usually means two things:
1. Agents use publicly available information in an efficient manner.
2. That agents understand the structure of the model economy and base their expectations

of variables on this knowledge.
▶ Rational Expectations is a strong assumption. No one truly understands the structure

of an economy – not even macroeconomists.
▶ But one reason for using Rational Expectations as a baseline assumption is that once

one has specified a particular model of the economy, any other assumption about
expectations means that people are making systematic errors, which seems
inconsistent with rationality.
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Introducing expectations III

▶ In other words, we think it’s entirely reasonable to presume that agents are
optimising to get what’s best for them.

▶ We can easily disagree on what “the best” is for them, but I think we can agree that
they will try to act optimally.
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First-order stochastic difference equations I

▶ A lot of models in economics take the form:

yt = xt + aEtyt+1, (9)

which just says that y today is determined by x and by tomorrow’s expected value of y
given the information we have today.

▶ But what determines this expected value? Rational Expectations implies a very
specific answer.

▶ Under Rational Expectations, the agents in the economy understand the equation
and formulate their expectation in a way that is consistent with it:

Etyt+1 = Etxt+1 + aEtEt+1yt+2,
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First-order stochastic difference equations II

where we can simplify the second expression on the RHS by the law of iterated
expectations (LIE):

Etyt+1 = Etxt+1 + aEtyt+2.

▶ Substituting our expression for Etyt+1 into our expression for yt yields:

yt = xt + aEtxt+1 + a2Etyt+2,

and if we kept repeating this by substituting for Etyt+2, then Etyt+3, and so on, we
would get:

yt = xt + aEtxt+1 + a2Etxt+2 + ...+ aN−1Etxt+N−1 + aNEtyt+N,

⇔ yt =
N−1∑
j=0

ajEtxt+j + aNEtyt+N,
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First-order stochastic difference equations III

where usually we assume that

lim
N→∞

aNEtyt+N = 0.

▶ So, the solution is:

yt =
∞∑
k=0

akEtxt+k. (10)

▶ This solution underlies the logic of a very large amount of modern macroeconomics.
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Example: Lucas tree model I

▶ Consider an asset that can be purchased today for price Pt and which yields a
dividend Dt.

▶ Suppose there is a close alternative to this asset that will yield a guaranteed rate of
return of r.

▶ Then, a risk neutral investor will only invest in the asset if it yields the same rate of
return, i.e., if

Dt + EtPt+1
Pt

= 1+ r. (11)
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Example: Lucas tree model II

▶ We can rearrange this to get:

Pt =
Dt
1+ r +

EtPt+1
1+ r ,

and then iterating forward we get:

Pt =
∞∑
j=0

(
1

1+ r

)j+1
EtDt+j. (12)

▶ This equation, which states that asset prices should equal a discounted present-value
sum of expected future dividends is usually known as the dividend-discount model.
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Forward and backward solutions I

▶ The model
yt = xt + aEtyt+1 (13)

can also be written as:
yt = xt + ayt+1 + aεt+1,

where εt+1 is a forecast error that cannot be predicted at date t.
▶ Moving the time subscripts back one period and rearranging this yields:

yt = a−1yt−1 − a−1xt−1 − εt.

Introduction VARs Rational Expectations DSGE Recipe References # 38



Forward and backward solutions II

▶ This backward-looking equation which can also be solved via recursive substitution
to give:

yt = −
∞∑
j=0

a−jεt−j −
∞∑
j=1

a−jxt−j. (14)

▶ The forward and backward solutions are both correct solutions to the first-order
stochastic difference equation (as are all linear combinations of them).

▶ Which solution we choose to work with depends on the value of the parameter a.
✱ If |a| > 1, then the weights on future values of xt in the forward solution (10) will explode.
✱ In this case, it is most likely that the forward solution will not converge to a finite sum.
✱ But this may not make sense; may think that practical applications should focus on the

backwards solutions.
▶ However, the equation holds for any set of shocks εt such that Et−1εt = 0.
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Forward and backward solutions III

▶ So the solution is indeterminate: We can’t actually predict what will happen with yt
even if we knew the full path for xt.

▶ But if |a| < 1, then the weights in the backwards solution are explosive and the
forward solution is the one to focus on. Also, this solution is determinate.

▶ Knowing the path of xt will tell you the path of yt. In most cases, it is assumed that
|a| < 1, and we can assume that

lim
n→∞

anEtyt+n = 0,

amounts to a statement that yt can’t grow too fast.

Introduction VARs Rational Expectations DSGE Recipe References # 40



Forward and backward solutions IV
▶ What if it doesn’t hold? Then the solution can have other elements. Let

y∗t =
∞∑
j=0

ajEtxt+j,

and let yt = y∗t + bt be any other solution. The solution must satisfy

y∗t + bt = xt + aEty∗t+1 + aEtbt+1.

▶ By construction, one can show that y∗t = xt + aEty∗t+1. Now, the above equation means
that the additional component satisfies

bt = aEtbt+1,

and because |a| < 1, this means that b is always expected to get bigger in absolute
value, going to infinity in expectation.
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Forward and backward solutions V

▶ This is a bubble. Note that the term bubble is usually associated with irrational
behaviour by investors. But in this simple model, the agents have rational
expectations. This is a rational bubble.

▶ There may be restrictions in the real economy that stop b from growing forever. But
constant growth is not the only way to satisfy bt = aEtbt+1. The following process also
works:

bt+1 =
{
(aq)−1bt + et+1, w.p. q,
et+1, w.p. 1− q,

where Etet+1 = 0.
▶ This is a bubble that everyone knows is going to crash eventually. And even then, a

new bubble can get going.
▶ Imposing limn→∞ anEtyt+n = 0 rules out bubbles of this (or any other) form.
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The DSGE Recipe
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From structural to reduced-form relationships I

▶ The forward solution to (13),

yt =
∞∑
j=0

ajEtxt+j,

provides useful insights into how the variable yt is determined.
▶ However, without some assumptions about how xt evolves over time, it cannot be

used to give precise predictions about the dynamics of yt (and ideally, we want to be
able to simulate the behaviour of yt).

▶ One reason why there is a strong linkage between DSGE modelling and VARs is
because we assume that the exogenous “driving variables” such as xt are generated
by backward-looking time series models like in VARs.
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From structural to reduced-form relationships II

▶ Consider for instance the case where the process driving xt is AR(1),

xt = ρxt−1 + εt, |ρ| < 1.

▶ In this case, we have
Etxt+j = ρjxt.
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From structural to reduced-form relationships III

▶ Now the model’s solution can be written as

yt =

 ∞∑
j=0

(aρ)j
 xt,

and because |aρ| < 1, the infinite sum converges to

∞∑
j=0

(aρ)j = 1
1− aρ.
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From structural to reduced-form relationships IV

▶ Which should look familiar if you did undergrad macro – it’s how we derived the
Keynesian multiplier formula. So, in this case, the model solution is

yt =
1

1− aρxt.

▶ Macroeconomists call this a reduced-form solution for the model. Together with the
equation describing the evolution for xt, it can be easily simulated on a computer
(e.g., Dynare will do this for you automatically).
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The DSGE recipe I

▶ While the previous example is obviously very simple, it illustrates the general
principle for getting predictions from DSGE models:

1. Obtain structural equations involving expectations of future driving variables (in this
case, the Etxt+j terms).

2. Make assumptions about the time series process for the driving variables (in this case,
xt).

3. Solve for a reduced-form solution that can be simulated on the computer along with the
driving variables.

▶ Finally, note that the reduced-form of this model also has a VAR-like representation,
which can be shown as follows

yt =
1

1− aρ(ρxt−1 + εt)

= ρyt−1 +
1

1− aρεt.
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The DSGE recipe II

▶ So both the xt and yt series have purely backward-looking representations.
▶ Even this simple model helps to explain how theoretical models tend to predict that

the data can be described well using a VAR.
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