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Static Optimisation
1 Unconstrained optimisation
Find all the critical points (solutions to the first order conditions) of the function

f(x, y) = x4 + x2 − 6xy + 3y2,

and classify each one (if possible) as a local maximum, local minimum, or saddle point.
The partial derivatives for the problem are as follows:

∂f

∂x
= 4x3 + 2x− 6y = 0. (1)

∂f

∂y
= −6x+ 6y = 0. (2)

From (2) we can infer that x = y. Substituting this back into (1) gives us the following:
4x3 = 4x. Which gives us critical points at (0,0), (1,1), and (-1,-1).

We need to check for local minimum, maximum, or saddle points. Therefore, we need
to check second order sufficiency conditions. The Hessian matrix for this problem is:

H =

[
12x2 + 2 −6
−6 6

]
.

At (0, 0)

H =

[
2 −6
−6 6

]
which implies that |H2| = −24, so H is indefinite, and this implies that (0, 0) is a saddle
point.

At (1, 1)

H =

[
14 −6
−6 6

]
which implies that |H2| = 48 and |H1| = 14, so H is positive definite, and this implies
that (1, 1) is a local minimum of f(1, 1) = −1.

At (−1,−1)

H =

[
14 −6
−6 6

]
which implies that, like above, there is a local minimum of f(−1,−1) = −1.
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2 Constrained optimisation
Use the Lagrangian method to find a maximum and minimum value of

x2 + y2,

subject to
x2 + xy + y2 = 3,

checking the constraint qualification and the second-order conditions.
The Lagrange for this problem is:

Z = x2 + y2 − λ(x2 + xy + y2 − 3),

where λ is the Lagrangian multiplier. Checking the gradient vector for the constraint
function, we can see that it is of full rank, and therefore the constraint condition is
fulfilled:

∇h(x, y)> =
[
2x+ y 2y + x

]
,

where h(x, y) is the constraint function. The first order conditions (FOCs) to this problem
are:

∂Z

∂x
= 2x− λ(2x+ y) = 0, (3)

∂Z

∂y
= 2y − λ(2y + x) = 0. (4)

From (3) we get an expression for λ as

λ =
2x

2x+ y
.

Substituting this into (4) we attain a solution of y2 = x2, which implies that

x = ±y.

If x = y, the constraint function becomes

3y2 = 3,

which gives two solutions the FOCs:

x = y = 1, and
x = y = −1,

λ =
2

3
.

If x = −y, the constraint function becomes

y2 = 3,
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which gives us two more solutions to the FOCs:

x =
√
3, y = −

√
3, and

x = −
√
3, y =

√
3,

λ = 2.

The bordered Hessian matrix for this problem is:

(H) =

 0 2x+ y 2y + x
2x+ y 2− 2λ −λ
2y + x −λ 2− 2λ

 ,
and we need to check the signs of the determinants of the last n −m principal minors.
Here, n −m = 2 − 1 = 1, so for a local max we need |(H)| > 0 = sign(−1)n; and for a
local min we need |(H)| < 0 = sign(−1)m.

We see that the determinants of the bordered Hessian are: -24, -24, 24, and 24 when
evaluated at the candidate solution points. This confirms global maxima at (-1,-1, 23 ) and
(1,1, 23 ), and global minima at (

√
3,−
√
3, 2) and (−

√
3,
√
3, 2), since the set of points

satisfying the constraint is compact.
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3 Karush-Kuhn-Tucker Theory
A consumer obtains utility u = x2y from consuming quantities x and y of goods X and
Y . The price of good X is 2, the price of good Y is 3, and his total income is 9. He
chooses x and y to maximise his utility subject to his budget constraint:

max
x,y

x2y

subject to

2x+ 3y ≤ 9

x > 0

y > 0.

3.1
Explain why his choice must satisfy 2x+ 3y = 9, and x > 0, y > 0.

2x+ 3y = 9 represents the consumer’s feasible set of consumption possibilities – any
point above or below this equality is either unaffordable or suboptimal. The strictly pos-
itive orthant constraints are to a) prevent negative consumption of a good, and b) to
define the existence of a utility function.

Treating the problem as an equality problem also simplifies the mathematics (no need for
Karush-Kuhn-Tucker (KKT) Theory).

3.2
Write down the Lagrangian for this problem, and solve the FOCs.

The consumer wishes to maximise u(x, y) = x2y subject to her budget constraint.
The consumer’s problem can be represented by the following Lagrangian function:

Z = x2y − λ(2x+ 3y − 9),

with the following FOCs:

∂Z

∂x
= 2xy − 2λ = 0, (5)

∂Z

∂y
= x2 − 3y = 0. (6)

Using the FOCs and the constraint function, we attain optimal values x∗ = 3, y∗ = 1,
and λ∗ = 3.

3.3
Show by checking the second order conditions that the solution you have found is a strict
local maximum.
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Evaluating the bordered Hessian matrix at the optimal point yields:

(H) =

0 2 3
2 2 6
3 6 0

 ,
and we need to check the signs of the determinants of the last n −m principal minors.
Here, n −m = 2 − 1 = 1, so for a local max, we need |(H)| > 0 = sign(−1)n, and for a
local min we need |(H)| < 0 = sign(−1)m.

For this problem evaluating at the optimal gives |(H)| = 54, which is the same sign
as (−1)n since n = 2. This point gives a strict local maximum.

3.4
Explain why this must also be the global maximum.

We have a single candidate for a maximum of the objective function on the set of
points satisfying the constraints. Since this is a compact set, we know that the objective
function achieves a global maximum on the set, so the one we have found must be it.
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4 Convexity
Show that the function

f(x, y) = x2 + 2y2 + xy + 3x+ 19y − 4

is strictly convex, by examining the determinant and trace of the Hessian and then using
the eigenvalue test, or otherwise.

The gradient vector (of partial derivatives) for this problem is:

∇f(x, y) =
[
2x+ y + 3
4y + x+ 19

]
,

and the matrix of second order partial derivatives is:

∇2f(x, y) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 1
1 4

]
= H,

which yields the Hessian matrix. We find that |H| = 7, so the eigenvalues have the same
sign; and tr(H) = 6, so that common sign is positive. The determinant of the Hessian
implies convexity, and its trace implies positive definiteness since each trace element is
greater than 0. Alternatively, we can look at the leading principal minors which 2 and 7,
implying positive definiteness.

4.1
Find the pair (x, y) that minimises f .

The FOC, which is now necessary and sufficient for a global minimum, is

∇f(x, y) =
[
0
0

]
,

this leads to argmin f = (1,−5), with f(1,−5) = −50.
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5 The firm’s problem
A firm produces output y > 0 from inputs K and L. Its production possibilities are
constrained by K ≥ 0, L ≥ 0, and Y (K,L) ≥ y where

Y (K,L) = (K + 1)1−α(L+ 1)α − 1, 0 < α < 1.

If the firm takes r and w, the strictly positive prices of K and L, as given, then what is
the least-cost way of producing y, and what is this cost? Give bounds on the ratio r/w in
terms of αand y under which the solutions you have found are valid.

The firm’s production problem is the following:

min wL+ rK,

s.t. (K + 1)1−α(L+ 1)α − 1 ≥ y,
K ≥ 0, L ≥ 0.

The constraint set is not compact, however we can compactify the set without losing
generality by specifying upper bounds of K and L given by the wage-rental ratio. We
only need compactness for existence – KKT conditions will find a global optimal if it does
exist due to convexity/concavity. We now consider the constraint qualification:

∇g =

∂g1∂K
∂g1
∂L

∂g2
∂K

∂g2
∂L

∂g3
∂K

∂g3
∂L

 =

(1− α)
[
L+1
K+1

]α
α
[
L+1
K+1

]α−1
1 0
0 1

 .
The rank of the row vectors of ∇g is of full rank, therefore the constraint qualification
cannot fail for any combination of binding constraints, and so the KKT conditions are
necessary for a global minimum. This gives a Lagrangian of the form:

Z = wL+ rK − λ((K + 1)1−α(L+ 1)α − 1− y),

and the following KKT conditions:

ZL = w − αλ(K + 1)1−α(L+ 1)α−1 ≥ 0, L ≥ 0, LZL = 0, (7)

ZK = r − (1− α)λ(K + 1)−α(L+ 1)α ≥ 0, K ≥ 0, KZK = 0, (8)

Zλ = (K + 1)1−α(L+ 1)α − 1− y ≤ 0, λ ≤ 0, λZλ = 0, (9)

Since we know that w, r, y > 0, and so if we consider the regime where neither of the
non-negativity constraints bind, we have

w = αλ(K + 1)1−α(L+ 1)α−1, (10)

r = (1− α)λ(K + 1)−α(L+ 1)α, (11)

and since both w and r are greater than zero, this implies that λ cannot be zero, and so
Zλ binds with equality to give

y = (K + 1)1−α(L+ 1)α − 1. (12)
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From (12) we have

y = (K + 1)1−α(L+ 1)α − 1

y + 1 = (K + 1)1−α(L+ 1)α

=⇒ (L+ 1)α =
y + 1

(K + 1)1−α
,

which we then substitute into (11) to get

r = (1− α)λ(K + 1)−α(L+ 1)α,

r = (1− α)λ(K + 1)−α
[

y + 1

(K + 1)1−α

]
r = (1− α)λ(K + 1)−α(y + 1)(K + 1)α−1

r = (1− α)λ(K + 1)−1(y + 1)

=⇒ K∗ + 1 =
(1− α)λ(y + 1)

r
.

Looking at (12) again we have

y = (K + 1)1−α(L+ 1)α − 1

(K + 1)1−α =
(y + 1)

(L+ 1)α
,

which we can substitute into (10):

w = αλ(K + 1)1−α(L+ 1)α−1,

w = αλ

[
(y + 1)

(L+ 1)α

]
(L+ 1)α−1

w = αλ(y + 1)(L+ 1)α−1−α

=⇒ L∗ + 1 =
αλ(y + 1)

w
.

Then we can substitute K∗ + 1 and L∗ + 1 into (12):

y = (K∗ + 1)1−α(L∗ + 1)α − 1

y + 1 =

[
(1− α)λ(y + 1)

r

]1−α [
αλ(y + 1)

w

]α
=

(1− α)1−αλ1−α(y + 1)1−α

r1−α
ααλα(y + 1)α

wα

= (y + 1)λ

[
1− α
r

]1−α [α
w

]α
=⇒ λ∗ =

[
r

1− α

]1−α [w
α

]α
, (13)
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which can sub into K∗ and L∗ to get :

K∗ =
(1− α)(y + 1)

r

[
r

1− α

]1−α [w
α

]α
− 1

= (y + 1)(1− α)1−1+αr1−α−1
[w
α

]α
− 1

∴ K∗ = (y + 1)

[
1− α
r

]α [w
α

]α
− 1,

and

L∗ =
α(y + 1)

w

[
r

1− α

]1−α [w
α

]α
− 1.

= (y + 1)α1−αwα−1
[

r

1− α

]1−α
− 1

∴ L∗ = (y + 1)
[w
α

]α−1 [ r

1− α

]1−α
− 1.

The values for K∗, L∗, and λ∗ for regime 1 satisfy the FOCs, non-negativity of multi-
pliers and KKT conditions. The production constraint is met, but the non-negativity
constraints on K and L are met iff:

(y + 1)−
1

1−α

[
1− α
α

]
≤ r

w
≤ (y + 1)

1
α

[
1− α
α

]
.

Why? From K∗ when K = 0 we have

1 = (y + 1)

[
1− α
r

]α [w
α

]α
rα

wα
= (y + 1)

[
1− α
r

]α
=⇒ r

w
= (y + 1)

1
α

[
1− α
α

]
,

and from L∗ we have

1 = (y + 1)
[w
α

]α−1 [ r

1− α

]1−α
= (y + 1)

wα−1

αα−1
r1−α

(1− α)1−α

= (y + 1)
wα−1

rα−1
α1−α

(1− α)1−α[ r
w

]α−1
= (y + 1)

[
1− α
α

]α−1
=⇒ r

w
= (y + 1)−

1
1−α

[
1− α
α

]
,
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which gives us our upper and lower bounds, respectively.

For the second regime, we assume that the non-negativity constraint on only K binds
(K = 0 =⇒ ZK > 0). But, we assume that L > 0. For convenience, it’s worth looking
at the KKT conditions again:

ZL = w − αλ(K + 1)1−α(L+ 1)α−1 ≥ 0, L ≥ 0, LZL = 0,

ZK = r − (1− α)λ(K + 1)−α(L+ 1)α ≥ 0, K ≥ 0, KZK = 0,

Zλ = (K + 1)1−α(L+ 1)α − 1− y ≤ 0, λ ≤ 0, λZλ = 0.

Since L > 0, this implies that λ 6= 0, and so Zλ binds with equality. Thus, we have

w = αλ(L+ 1)α−1,

y = (L+ 1)α − 1,

and we can solve for λ and L:

(y + 1)
1
α = L∗ + 1,

which after substituting into w gives

w = αλ(y + 1)
α−1
α

=⇒ λ∗ =
w

α(y + 1)
α−1
α

.

The constraints imposed in this regime occur iff:

(y + 1)
1
α

[
1− α
α

]
≤ r

w
.

Finally, for the third regime, we assume that the non-negativity constraint on only L
binds (L = 0 =⇒ ZL > 0). But, we assume that K > 0, which implies that λ 6= 0, and
so Zλ binds with equality. Thus, we have

r = (1− α)λ(K + 1)−α,

y = (K + 1)1−α − 1,

and we can solve for λ and K:

(y + 1)
1

1−α = K∗ + 1,

and substituting this into r gives

r = (1− α)λ(y + 1)−
α

1−α

=⇒ λ∗ =
r(y + 1)

α
1−α

1− α
.
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The constraints imposed in this regime occur iff:

r

w
≤ (y + 1)−

1
1−α

[
1− α
α

]
.

For completion, we can summarise the three regimes as

r

w
≤︸︷︷︸

regime 3

(y + 1)−
1

1−α

[
1− α
α

]
≤ r

w
≤︸ ︷︷ ︸

regime 1

(y + 1)
1
α

[
1− α
α

]
≤ r

w︸︷︷︸
regime 2

.
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6 The consumer’s problem (again)
A household has preferences represented by the utility function u(x1, x2) where

u(x1, x2) = xβ1 + xβ2 , 0 < β < 1,

it is constrained by x1 ≥ 0, x2 ≥ 0, and also by

P sx1 + x2 ≤ P sm1 +m2,

P bx1 + x2 ≤ P bm1 +m2,

where m1, m2 are fixed endowments, both strictly positive. The price of good 2 is norm-
alised to 1, and we also have 0 < P s < P b.
Draw the budget set. What is the interpretation of P s and P b? What choices should the
household make if it wants to maximise utility? Give bounds on P s and/or P b in terms
of β, m1, and m2 under which the solutions you have found are valid.

P b and P s can be interpreted as the relative price to borrow and save x1, respectively,
against x2. For example, observing the budget set, the household is able to trade x2 for
x1 at the price of P s between points a and b. From points b to c, the household is only
able to exchange x1 for x2 at the higher price of P b.

To solve this optimisation problem, we can think of the household’s problem as:

min u(x1, x2) = xβ1 + xβ2 ,

s.t. x1 ≥ 0, x2 ≥ 0,

P sx1 + x2 ≤ P sm1 +m2,

P bx1 + x2 ≤ P bm1 +m2.

But if we look at the marginal rate of substitution (MRS), we get an expression which
looks like:

MRS =
MU1

MU2
=
βxβ−11

βxβ−12

.

We can see that the MRS is undefined for values of x1 and x2 if either of them tend
to zero. As such, we can ignore the positive constraints for our household’s problem,
reducing the number of constraints to two. The gradient vector looks like

∇g =

[
P s 1
P b 1

]
,

and is of full rank, implying that the KKT conditions are necessary for a global max (note,
we have a concave objective function subject to a set of convex constraint functions). The
Lagrangian for our problem is:

Z = xβ1 + xβ2 − λ1(P sx1 + x2 − P sm1 −m2)− λ2(P bx1 + x2 − P bm1 −m2),

with the following KKT conditions:

Z1 = βxβ−11 − λ1P s − λ2P b ≥ 0, x1 ≥ 0, x1Z1 = 0, (14)

Z2 = βxβ−12 − λ1 − λ2 ≥ 0, x2 ≥ 0, x2Z2 = 0, (15)
Zλ1

= P sx1 + x2 − P sm1 −m2 ≤ 0, λ1 ≥ 0, λ1Zλ1
= 0, (16)

Zλ2
= P bx1 + x2 − P bm1 −m2 ≤ 0, λ2 ≥ 0, λ2Zλ2

= 0. (17)
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Since we know that x1, x2 > 0, we know that (14) and (15) bind with equality. Thus we
have three regimes: a) When both λ1 and λ2 > 0, b) when only λ1 > 0 and λ2 = 0, and
c) when only λ2 > 0 and λ1 = 0.

When both Zλ1
= Zλ2

= 0, our KKT conditions become:

βxβ−11 = λ1P
s + λ2P

b (18)

βxβ−12 = λ1 + λ2, (19)
P sx1 + x2 = P sm1 +m2, (20)

P bx1 + x2 = P bm1 +m2. (21)

From (20) and (21):

P sx1 − P sm1 = P bx1 − P bm1

=⇒ x1(P
s − P b) = P sm1 − P bm1

x∗1 = m1,

and substituting this value for x∗1 into either (20) or (21) yields

P sm1 + x2 = P sm1 +m2

=⇒ x∗2 = m2.

We then substitute these values into (18) and (19) to solve for two equations in two
unknowns:

βmβ−1
1 = λ1P

s + λ2P
b,

βmβ−1
2 = λ1 + λ2,

so we have

βmβ−1
1 = (βmβ−1

2 − λ2)P s + λ2P
b

= βmβ−1
2 P s + λ2(P

b − P s)

=⇒ λ∗2 =
β(mβ−1

1 −mβ−1
2 P s)

P b − P s
,

and, by implication,

λ∗1 = βmβ−1
2 − β(mβ−1

1 −mβ−1
2 P s)

P b − P s

=
βmβ−1

2 (P b − P s)− β(mβ−1
1 −mβ−1

2 P s)

P b − P s

=
βmβ−1

2 P b − βmβ−1
2 P s − βmβ−1

1 + βmβ−1
2 P s

P b − P s

λ∗1 =
β(mβ−1

2 P b −mβ−1
2 P s −mβ−1

1 +mβ−1
2 P s)

P b − P s
.
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This point can be diagrammatically represented by the intersection point of the two
budget constraints (m1,m2) – and this makes intuitive sense. If a consumer is given an
initial endowment of m1 and m2, taking prices and preferences as given, then they can
no better by exchanging x1 for x2. This occurs iff

Ps ≤
[
m2

m1

]1−β
≤ Pb.

For the second regime (λ1 6= 0 =⇒ Zλ1
= 0) we have the following from the KKT

conditions:

βxβ−11 = λ2P
b,

βxβ−12 = λ2,

P sx1 + x2 = P sm1 +m2.

So solving for x∗1 and x∗2 gives:

xβ−11 = xβ−12 P b

x1 = x2(P
b)

1
β−1 ,

P sx2(P
b)

1
β−1 + x2 = P sm1 +m2

x2(P
s(P b)

1
β−1 + 1) = P sm1 +m2

∴ x∗2 =
P sm1 +m2

1 + P s(P b)
−1
1−β

,

and

xβ−11 = βxβ−12 P b

xβ−12 =
xβ−11

βP b

x2 =
x1

(βP b)
1

β−1

,

P sx‘1 +
x1

(βP b)
1

β−1

= P sm1 +m2

x1

(
P s + (βP b)

1
1−β

)
= P sm1 +m2

=⇒ x∗1 =
P sm1 +m2

P s + (βP b)
1

1−β

.

The equality and strict inequality from the KKT conditions together with the fact that
P b > P s imply that x1 > m1 and x2 < m2, and so the solution is below and to the right

of (m1,m2). Further, m2 > x2 =⇒ P b <
(
m2

m1

)1−β
.
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Figure 1: Figure for Question 6

Now, for the third regime (λ2 6= 0 =⇒ Zλ2
= 0), by symmetry we have:

x∗1 =
P bm1 +m2

P b + (βP b)
1

1−β

,

x∗2 =
P bm1 +m2

1 + P b(P s)
−1
1−β

,

when P s >
(
m2

m1

)1−β
.
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