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Consumer and Producer Theory
1 Utility maximisation

1.1
A consumer has utility function

u(x1, x2) = (1 + x1)
√
x2

defined for quantities of two products, 1 and 2. Product 1 can be consumed in continuous
quantities (i.e. x1 can be any non-negative real number), while product 2 is a discrete
good (i.e., the possible levels of consumption of product 2 are x2 = 0 or x2 = 1). The
consumer’s consumption must satisfy her budget constraint P1x1 + P2x2 ≤ w, where
Pi > 0 is the unit price of product i = 1, 2 and w > 0 is her wealth. When does the
consumer choose to buy product 2? Is product 1 a necessity or a luxury?

The consumer’s problem can be written as:

max u(x1, x2) = (1 + x2)
√
x2,

subject to:
P1x1 + P2x2 ≤ w, x1 ≥ 0, x2 ∈ {0, 1}.

Assuming that the consumer’s budget constraint binds, then there are two regimes we
need to assess: 1) When x2 = 0, and 2) when x2 = 1. When the consumer does NOT
buy any x2 then the amount of x1 she purchases will be

x∗1 =
w

P1
,

and her utility will be

u(x1, x2) = (1 + x∗2)
√
x∗1 =

√
w

P1
. (1)

If she chooses to buy one unit of x2 then we have

x∗2 = 1,

x∗1 =
w − P2

P1
,

and so her utility will be

u(x1, x2) = (1 + 1)

√
w − P2

P1
. (2)

She will be indifferent between her different consumption bundles when we set the two
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utility levels equal to one another √
w

P1
= 2

√
w − P2

P1

w
1
2 = 2(w − P2)

1
2

w = 4w − 4P2

=⇒ P2 =
3w

4
,

implying that when P2 = 3w
4 she will be indifferent to either consuming or not consuming

x2. We can also clearly see that when she will definitely consume x2 when P2 <
3w
4 since

2 is greater than 1.

Is x1 a necessity or luxury? This is regime dependent. When x∗2 = 0, then x1 is a
normal good with unit income elasticity. When x∗2 = 1, then x1 is a luxury good with
income elasticity of greater than unity (w/(w − P2)). Alternatively we can look at the
demand function for x1:

x1(P1, P2, w) =

{
w
P1

if P2 >
3w
4 ,

w−P2

P1
if P2 <

3w
4 .

The budget share for x1 of the consumer is unity in w for small values of w, then jumps
discontinuously down when w reaches 4

3P2, and then increases again with w. Thus, this
product is neither (globally) a necessity or a luxury.

1.2
A consumer has utility function

u(x1, x2) = (x1 + 1)x2

over goods x1, x2 ≥ 0, and faces budget constrain P1x1 + P2x2 ≤ w.

1.2.1

Show that the utility function is strictly quasi-concave.
Recall that

• A necessary condition for a function to be quasi-concave is that the even-numbered
principle minors of the bordered Hessian be non-negative and the odd-numbered
principle minors be non-positive; and

• A sufficient condition for a function to be quasi-concave is that the even-numbered
principle minors of the bordered Hessian be strictly positive and the odd-numbered
principle minors be strictly negative.
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The bordered Hessian for u is:

(H) =

 0 x2 1 + x1
x2 0 1

1 + x1 1 0

 .
The principal minors are |(H)1| = −x22 < 0 and |(H)2| = −x2(−(1 + x1)) > 0 which
verifies strict quasi-concavity.

1.2.2

If P = (P1, P2)> = (4, 1) and w = 2, what is the consumer’s demand for x1 and x2?
Set up the consumer’s problem as:

max u(x1, x2) = (1 + x1)x2,

subject to:
P1x1 + P2x2 ≤ w, x1 ≥ 0, x2 ≥ 0.

We setup the following Lagrangian:

Z = (1 + x1)x2 + λ(w − P1x1 − P2x2),

and the KKT conditions:

Z1 = x2 − λP1 ≤ 0, x1 ≥ 0, x1Z1 = 0,

Z2 = 1 + x2 − λP2 ≤ 0, x2 ≥ 0, x2Z2 = 0,

Zλ = w − P1x1 − P2x2 ≥ 0, λ ≥ 0, λZλ = 0.

To verify slackness, we know that our parameters are all greater than 0. From Zλ, this
implies that x1 and x2 cannot both be zero. From Z2, if x1 = 0 then it implies that λ = 1
which implies that x2 > 0 from Z1. This means that Z2 and Zλ hold with strict equality.
Thus, we have two regimes: x1 = 0, Z1 ≤ 0 and x1 > 0, Z1 = 0.

If we have x1 > 0 =⇒ Z1 = 0, then from our KKT conditions we have:

x2 = 4λ

1 + x1 = λ

2 = x1 + 4x2.

But this regime cannot hold, as solving for x∗1 gives a value less than zero. Thus, we turn
our attention to x1 = 0 =⇒ Z1 ≤ 0. For our given parameters we attain the following
optimal point:

x∗1 = 0, x∗2 = 2, λ = 1.
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1.2.3

Derive the Walrasian (or Marshallian) demand functions x1(P, w) and x2(P, w) for gen-
eral (P, w).

For the general case, we have the same KKT conditions as before. But assuming that
prices and wages have no constraints, we assume that x1, x2 > 0 and that all constraints
bind with equality. This gives the following optimal point:

x∗1 =
w − P1

2P1
,

x∗2 =
P1 + w

2P2
,

λ∗ =
P 2
1 + P1w

2P2
,

where x∗ are our Marshallian demand functions.

1.2.4

What is the indirect utility function? Verify Roy’s Identity.
The indirect utility function is the utility function evaluated with our Marshallian

demand functions:
V (P,w) = u(x∗(P,w)),

so

V (P,w) = x∗1x
∗
2 + x∗2

=
w − P1

2P1

P1 + w

2P2
+
P1 + w

2P2
.

Roy’s Identity allows us the extract the Marshallian demand functions from the indirect
utility function, and is defined as follows:

x∗i (P,w) = − ∂V
∂Pi

/
∂V

∂w
.

For x1 the ratio of partial derivatives using Roy’s Identity gives us

x∗1 = −2(w + P1)4P1P2 − (w + P1)24P2

16P 2
1P

2
2

× 4P1P2

2(w + P1)
,

and after rearranging we get:

x∗1 = −
[
1− w + P1

2P1

]
=
w + P1

2P1
− 1 =

w − P1

2P1
,

which is the same result as above.
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2 Expenditure minimisation

2.1
Suppose there are L products and a customer’s expenditure function takes the Gorman
Polar Form:

e(P, u) = a(P) + ub(P ).

Show that the Engel curves are straight lines.
We need to obtain Walrasian/Marshallian demand functions to talk about Engel

curves. Since, in general,
e(P, V (P, w)) = w,

it follows that
a(P) + V (P, w)b(P) = w,

and hence
V (P, w) =

w − a(P)

b(P)
.

Now, we can apply Roy’s Identity

xi(P, w) = − ∂V
∂Pi

/
∂V

∂w
,

∂V

∂Pi
=

∂

∂Pi

[
wb(P)−1 − a(P)

b(P)

]
= −wb(P)−2b′(P)− a′(P)b(P)− a(P)b′(P)

b(P)2

= −wb
′(P)

b(P)2
− a′(P)b(P)− a(P)b′(P)

b(P)2

=
a(P)b′(P)− a′(P)b(P)− wb′(P)

b(P)2
,

∂V

∂w
=

1

b(P)
,

∴ − ∂V
∂Pi

/
∂V

∂w
= −b(P)

[
a(P)b′(P)− a′(P)b(P)− wb′(P)

b(P)2

]
=
−b(P)a(P)b′(P) + a′(P)b(P)2 + b(P)wb′(P)

b(P)2

= a′(P) +
b(P)wb′(P)− b(P)a(P)b′(P)

b(P)2

= a′(P) +
wb′(P)− a(P)b′(P)

b(P)

∴ xi(P, w) =
∂a(P)

∂Pi
+
∂b(P)

Pi

w − a(P)

b(P)
.
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We can see that the income effect does not depend on w. Strictly, Engel curves are
depicted in product space. With two products, say, we need to show that x2 is a linear
function of x1 as w varies, but this is obvious given that both products’ demands are
linear in w.

2.1.1

Assume that a consumer’s consumption set is X ⊂ RL such that xl ≥ γl for each l =
1, ..., L, where γ = (γ1, ..., γL) is a vector of parameters with γl ≥ 0. Suppose that the
consumer’s utility function defined on X takes the Stone-Geary form:

u(x) =

L∏
l=1

(xl − γl)αl ,

where each αl > 0 and
∑L
l=1 αl = 1. Show that the consumer’s expenditure function takes

the form in the previous question. Interpret a(P) as subsistence expenditure, and b(P) as
a price index which represents the marginal cost of living.

Let zl = xl − γl, which allows us to write our problem as:

max

L∏
l=1

zαll ,

which is a simple Cobb-Douglas maximisation problem for a consumer with w − γP
income. An interior solution to this problem is:

zl = αl

(
w − γP

Pl

)
,

and since zl = xl − γl:

xl = zl + γl = αl

(
w − γP

Pl

)
+ γl,

which we can rewrite as:

xl = αl

(
w −

∑L
l=1 Plγl
Pl

)
+ γl,

and taking zl and plugging it back into our utility function yields the indirect utility
function:

V (P, w) =

L∏
l=1

[
αl

(
w −

∑L
l=1 Plγl
Pl

)]αl
L∏
l=1

Pαll V (P, w) =

L∏
l=1

ααll

(
w −

L∑
l=1

Plγl

)
∏L
l=1 P

αl
l∏L

l=1 α
αl
l

V (P, w) = w −
L∑
l=1

Plγl,
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and since we always have the identity that

V (P, e(P, u)) = u,

=⇒ e(P, u) =

∏L
l=1 P

αl
l∏L

l=1 α
αl
l

u+ γP

=

[
L∏
l=1

(
Pl
αl

)αl]
u+

L∑
l=1

Plγl.

This takes the form in the first part of the question. The term a(P) =
∑L
l=1 Plγl rep-

resents the minimum wealth needed to purchase the bundle of ‘subsistence quantities’ γl
(utility is not defined unless the consumer has w at least equal to this level). The ‘spare’
wealth is w−

∑L
l=1 Plγl, and this is used to generate utility. The cost of an extra unit of

utility is

b(P) =

L∏
l=1

(
Pl
αl

)αl
,

which is clearly a price index: it equals a geometric weighted average of the individual
prices, with more weight put on prices of more important products.
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3 Constant elasticity of substitution

3.1
Consider the CES utility function

u(x1, x2) = xθ1 + xθ2,

where 0 < θ < 1.

3.1.1

Show that u is a quasi-concave function in x1 and x2.
Much like the question 1.2, we need the bordered Hessian matrix of u to make inference

on its quasi-concavity. The bordered Hessian for u is:

(H) =

 0 θxθ−11 θxθ−12

θxθ−11 θ(θ − 1)xθ−21 0

θxθ−12 0 θ(θ − 1)xθ−22

 .
The principal minors for (H) are

|(H1)| = −θ2x2θ−21 < 0,

|(H2)| = −θxθ−11 (θxθ−11 − θ(θ − 1)xθ−22 ) > 0,

thus proving u is quasi-concave.

3.1.2

Derive the Walrasian (or Marshallian) demand functions and indirect utility function.
Verify that these functions are homogeneous of degree zero in (P, w).

The consumer’s problem is
max xθ1 + xθ2

subject to
P1x1 + P2x2 = Y.

The Lagrangian is
Z = xθ1 + xθ2 + λ(Y − P1x1 − P2x2),

and the first order conditions are:

Z1 = θxθ−11 − λP1 = 0

Z2 = θxθ−12 − λP2 = 0

Zλ = Y − P1x1 − P2x2 = 0.
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Rearranging and solving for the optimal values gives us

x∗1 =

(
P1

θ

) 1
θ−1 θY

P
θ
θ−1

1 + P
θ
θ−1

2

,

x∗2 =

(
P2

θ

) 1
θ−1 θY

P
θ
θ−1

1 + P
θ
θ−1

2

,

λ∗ =

 θY

P
θ
θ−1

1 + P
θ
θ−1

2

θ−1

.

The indirect utility function is thus

V (P, Y ) =

(
P1

θ

) θ
θ−1

 θY

P
θ
θ−1

1 + P
θ
θ−1

2

θ

+

(
P1

θ

) θ
θ−1

 θY

P
θ
θ−1

1 + P
θ
θ−1

2

θ

.

Use x∗1 to show HOD0 where ηk denotes degree k of homogeneity:

(ηP1)
1
θ−1 θ(ηY )

(ηθ)
1
θ−1 (ηP1)

1
θ−1 + (ηθ)

1
θ−1 (ηP2)

1
θ−1

=⇒ η
1+θ−1
θ−1

η
θ
θ−1

P1
1
θ−1 θY

θ
1
θ−1P1

1
θ−1 + θ

1
θ−1P2

1
θ−1

where η0 =⇒ HOD0. By symmetry the same holds for x∗2, and thus the indirect utility
function is also HOD0.

3.1.3

Show that the elasticity of substitution between goods 1 and 2 is constant and equal to
1

1−θ . Note that the elasticity of substitution between goods 1 and 2 is defined to be

ε(P, w) = −
∂
[
x1(P,w)
x2(P,w)

]
∂
[
P1

P2

] P1

P2

x1(P,w)
x2(P,w)

.

We wish to prove that ε(P, w) = 1
1−θ . Define

A = θP θ1 + θP θ2 ,

and

x∗1 =
θY P

1
θ−1

1

A
1
θ−1

,

x∗2 =
θY P

1
θ−1

2

A
1
θ−1

.
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Start with
x∗1
x∗2

=
θY P

1
θ−1

1

A
1
θ−1

A
1
θ−1

θY P
1
θ−1

2

=

(
P1

P2

) 1
θ−1

,

and for the second term of ε:

P1

P2
/

(
P1

P2

) 1
θ−1

=

(
P1

P2

)1− 1
θ−1

=

(
P1

P2

) θ−2
θ−1

.

Then, differentiating the expression for the ratio of the Marshallian demand curves with
respect to P1/P2 yields:

1

θ − 1

(
P1

P2

) 2−θ
θ−1

,

which gives our result for the elasticity, ε:

ε = −

[
1

θ − 1

(
P1

P2

) 2−θ
θ−1
(
P1

P2

) θ−2
θ−1

]
=

1

1− θ
.
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4 Cost minimisation
This question is about a profit maximising firm. However, it could also apply to a utility
maximising consumer whose level of utility is given (i.e. expenditure minimisation). Let
c(W, q) be a firm’s minimum cost of producing q units of a single output when input
prices are W = (w1, ..., wL)>, and let z(W, q) = (z1(W, q), ..., zL(W, q)) be the choice
of inputs which minimise its cost of producing this output (so z(W, q) is the conditional
factor demand function). Define sij = ∂zi(W,q)

∂wj
for i, j = 1, ..., L. The L × L matrix

whose (i, j)’th element is sij is denoted S.

4.1
Why is S negative semi-definite and symmetric?

c(W, q) is concave in W and by Shephard’s Lemma

∂c(W, q)

∂Wi
= zi(W, q).

Since the matrix of second order derivatives is symmetric, and here is equal to the matrix
of derivatives of z, it follows that the matrix of derivatives of z is both symmetric and
negative semidefinite (NSD), implying that all the diagonal elements are negative. Recall
that for a matrix A:

• If |Ai| ≥ 0, 1 ≤ i ≤ n, then A is positive semi-definite;

• If |Ai| ≤ 0 for i is odd and |Ai| ≥ 0 for i is even, then A is negative semi-definite.

Since S is a matrix of first order partial derivatives of the firm’s conditional factor demand
functions (by Shephard’s lemma) we know that the diagonal elements of S essentially
capture the substitution effect of input i and its factor price – and we know by Slutsky’s
equation that the substitution effect is negative. Finally, a NSD matrix implies that the
underlying cost function is convex, and that we have a global minimum. Combining these
facts completes our requirement for NSD.

As for symmetry, the off-diagonal elements essentially give us our cross-price effects of
input i and j for i 6= j. Using Shephard’s lemma and Young’s theorem, we know that
these cross-price effects must be symmetrical.

Let x̄i be the conditional factor demand for input i, c be the firm’s cost function, and Pi
be the price of input i. By Shephard’s lemma we have:

∂x̄i
∂Pj

=
∂

∂Pj

∂c

∂Pi

and by Young’s theorem:

=
∂2c

∂Pj∂Pi
=

∂2c

∂Pi∂Pj

=
∂x̄j
∂Pi

.
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4.2
Show that for each i = 1, ..., L we have

L∑
j=1

wj
∂zi(W, q)

∂Wj
= 0

Deduce that the determinant of S is zero.
We can use duality theory to justify this, and look at a simple two input case. If

w1
∂z1
∂w1

+ w2
∂z1
∂w2

= 0

then
w1

∂z1
∂w1

= −w2
∂z1
∂w2

.

We can set the ratio of input prices equal to the ratio of partial derivatives of conditional
demands wrt inputs:

−w1

w2
=
∂z1
∂w1

/
∂z1
∂w2

,

which is analogous to the standard consumer utility maximisation/firm profit maximisa-
tion problem, thus verifying the general case for the input shares summing to zero.

4.3
The matrix below shows S for a profit maximising firm with three inputs at the input
prices W = (1, 2, 6)>:

S =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 =

−10 ? ?
? −4 ?
3 ? ?


Using Young’s Theorem we can start to fill in the matrix, giving us:−10 −4 3

−4 −4 2
3 2 −7/6

 .
To start, we know by Young’s Theorem that s31 = s13. Next we can get s12 using the
properties from the previous question

1×−10 + 2× s12 + 6× 3 = 0

=⇒ s12 = −4,

=⇒ s21 = −4,

and repeat this process for the other elements. Then check if S is NSD.

(−1)|S1| = 10

(−1)2|S2| = 24

|S3| = 0,
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therefore S is NSD. We know that if Hicksian demand functions have a matrix of deriv-
atives which is symmetric and NSD, we can find a utility function/production set which
generates these functions. Thus, S possesses all the required properties.
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5 Separability and quasi-linear utility
Consider the separable, quasi-linear utility function

u = v(x1, x2) + γx3

where
v(x1, x2) = α log x1 + β log x2

5.1
Derive the demand for the three goods.

Our problem is the following:

max u(x) = α log x1 + β log x2 + γx3

subject to
P1x1 + P2x2 + P3x3 = Y.

Our Lagrangian is:

Z = α log x1 + β log x2 + γx3 + λ(Y − P1x1 − P2x2 − P3x3),

with the following first order conditions:

Z1 =
α

x1
− λP1 = 0,

Z2 =
β

x2
− λP2 = 0,

Z3 = γ − λP3 = 0,

Zλ = Y − P1x1 − P2x2 − P3x3 = 0.

With some rearranging, we get the following:

x∗1 =
αP3

γP1
, x∗2 =

βP3

γP2
, x∗3 =

Y

P3
− α− β

γ
, λ∗ =

γ

P3
.

5.2
Show that the income effects for goods 1 and 2 are zero.

The income effect is given by the Slutsky equation.

∂x∗i
∂Pi

=
∂x̄i
∂Pi
− x∗i

∂x∗i
∂Y

.

So, for x1 and x2:

x∗1
∂x∗1
∂Y

=
αP3

γP1
× 0 = 0,

x∗2
∂x∗2
∂Y

=
βP3

γP2
× 0 = 0.
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5.3
Derive an expression for the expenditure on the separable group as a function of prices of
all of the goods.

Spending allocated to x1 and x2 is

P1
αP3

γP1
+ P2

βP3

γP2

= P3

(
α+ β

γ

)
.

5.4
Solve the sub-utility maximisation problem for goods 1 and 2 subject to the budget con-
straint derived in the previous question and show that the demands for goods 1 and good
2 are identical to those derived derived in the first part of this question.

Our Lagrangian is now

Z = α log x1 + β log x2 + λ(P3

(
α+ β

γ

)
− P1x1 − P2x2),

with the following first order conditions:

Z1 :
α

x1P1
= λ,

Z2 :
β

x2P2
= λ,

Zλ : P3

(
α+ β

γ

)
= +P1x1 + P2x2.

From the above first order conditions, we get

x1 =
αP2x2
βP1

,

which we substitute into our Zλ condition to get an expression for x∗2 :

x∗2 =
P3(α+ β)

γP2

(
α
β + 1

)
=
P3(α+ β)β

γP2(α+ β)

=
βP3

γP2
= x∗2.

By symmetry, we also get the same result for x∗1:

x∗1 =
αP3

γP1
.
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